UCRL-ID-125673

Modeling a Set of Heavy Oil Aqueous Pyrolysis Experiments

Charles B. Thorsness John G. Reynolds

November 1996

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd., Springfield, VA 22161

MODELING A SET OF HEAVY OIL AQUEOUS PYROLYSIS EXPERIMENTS

Charles B. Thorsness John G. Reynolds

Abstract

Aqueous pyrolysis experiments, aimed at mild upgrading of heavy oil, were analyzed using various computer models. The primary focus of the analysis was the pressure history of the closed autoclave reactors obtained during the heating of the autoclave to desired reaction temperatures. The models used included a means of estimating nonideal behavior of primary components with regard to vapor liquid equilibrium. The modeling indicated that to match measured autoclave pressures, which often were well below the vapor pressure of water at a given temperature, it was necessary to incorporate water solubility in the oil phase and an activity model for the water in the oil phase which reduced its fugacity below that of pure water. Analysis also indicated that the mild to moderate upgrading of the oil which occurred in experiments that reached 400°C or more using a Fe(III) 2-ethylhexanoate could be reasonably well characterized by a simple first order rate constant of 1.7x108 exp(-20000/T) s⁻¹. Both gas production and API gravity increase were characterized by this rate constant. Models were able to match the complete pressure history of the autoclave experiments fairly well with relatively simple equilibria models. However, a consistent lower than measured buildup in pressure at peak temperatures was noted in the model calculations. This phenomena was tentatively attributed to an increase in the amount of water entering the vapor phase caused by a change in its activity in the oil phase.

INTRODUCTION

Heavy crude oil with an API gravity below 20 generally has a considerably lower market value then benchmark crudes because of undesirable physical and chemical properties (e.g., high viscosity and high heteroatom content). One strategy to increase the value of these crude oils and allow easier transport by existing pipelines is in-field upgrading. Aqueous pyrolysis is one candidate for in-field upgrading of heavy oils. It involves heating an oil-water mixture under pressure, possibly with a catalyst present, to partially crack and coke the heavy constituents and thus improve the oil quality. This process is attractive since the heavy oils are often associated with some thermally assisted recovery process, such as steam flooding, and as a result are often produced at somewhat elevated temperatures and with considerable water. The produced fluids, therefore, already require some form of dewatering step to allow them to be marketed, and the aqueous pyrolysis process can be viewed as an extension of the dewatering process.

As a first step in exploring the potential of aqueous pyrolysis as an in-field upgrading step, a series of autoclave experiments have been performed to obtain data on the conditions needed to allow significant modification of a typical heavy crude. These experiments vielded information on API gravity change, coke formation, and gas yield over a temperature range of 350-425°C and pressures up to 30 MPa.

Probably the most important parameter in determining the economic viability of an aqueous pyrolysis process is the pressure at which the process must operate. Since in the aqueous pyrolysis process it is necessary to maintain water in a liquid phase, these pressures are potentially quite high—the vapor pressure of water at 350°C is 165 MPa (2390 psia). Results from autoclave experiments are difficult to use directly as a guide for pressure requirements for an actual process. This is because the autoclave is a closed system with a fixed volume. In an actual process, venting of vapor is often desirable to control the process pressure and minimize required reactor volumes. This means that the phase composition of autoclave liquid and process liquids are potentially different.

To be able to estimate the pressure behavior of a proposed aqueous pyrolysis process it is important that some account of the interchange between liquid and vapor states occurring within the autoclave be understood. This is important not only from the standpoint of extrapolating the autoclave data to other more process related systems, but also to allow the maximum amount of data to be obtained from the experiments. Since the autoclave experiments involve heating a mixture from room temperature to reaction conditions and then cooling the system back to room temperature the pressure history of the autoclave can be fairly complicated. This is a result of the production of gas and vapors from the decomposition reactions and the exchange of components between the vapor and liquid phases.

The aim of this report is to analyze available data, primarily the pressure history data, from a series of autoclave experiments. The analysis involves simple material balance considerations and application of mathematical models. Particular attention is paid to the water component since its behavior is a major contributor to overall pressure response of the system.

SUMMARY OF EXPERIMENTAL DATA

The details of the experimental series is given elsewhere¹. This section is a brief description and summary of the run series. The data of interest was generated using a typical California heavy crude with an API gravity of 13.5°. Selected analytical data for the crude is given in Appendix I.

The autoclave experiments were done in vessels with an approximate volume of one liter. The reactors were typically half filled with oil-water mixtures. The gas space was filled with nitrogen. The experimental setup allowed the reactor and its contents to be heated and gently rocked. During the duration of an experiment, furnace and internal reactor temperatures were recorded along with the reactor pressure. A typical temperature and pressure history for the active period of an experiment is shown in Fig. 1. The active period of the experiment, heatup and isothermal intervals, typically lasted about eight hours while the cool-down period was about 24 hours. Most experiments included a nearly isothermal interval of about 30 minutes at the reaction temperature of choice. For the case of Experiment 126 shown in Fig. 1, the plateau temperature was about 425°C. Immediately following the isothermal interval, the furnace was turned off and temperature began to drop. The rate of initial decrease, based on an average of a number experiments is about 1°C per minute.

Figure 1. Pressure and temperature history for Experiment 126, final pressure and temperature were 22 °C and 0.96 MPa at 1249 min (20.8 hrs).

At the end of each experiment, after the reactor and its contents had been returned to near room temperature, a small gas sample was removed for gas chromatographic analysis. In addition, coke and oil yield and final API oil gravity were determined.

In may of the experiments, a catalyst was used to improve cracking and a surfactant was employed to enhance the mixing of the oil and water phases. In several experiments only water was added, and in two experiments the system consisted of only water and nitrogen. These water-nitrogen experiments were done to help verify model computations.

Table 1 lists information on oil-water mixture runs. The catalysts are designated by their catalytic action. The actual catalyst were: Fe-III 2-ethylhexanoate, CuCl₂, NaMoO₃, Zn(NO₃)₂, Ni(NO₃)₂ and Co-II 2-ethylhexanoate. The measurements of coke yields were difficult and in may cases required some estimation to be done. Experiment 96 was performed with crude oil which had been totally dewatered using a toluene distillation. It was estimated that approximately 4.5 wt% toluene remained in the final oil after dewatering. In estimating the water content of the mixtures, a value of 1.25 wt% water in the oil obtained from the dewatering test was used in addition to the water actually added to the mixture.

Table 1. Summary information on experimental autoclave runs.

	Total Load	Reactor Vol.	Water	Catalyst	Catalyst		Maximum 7	Maximum P	Est. Coke	Product API	Final P
Exp.	(kg)	(œ)	(wt%)	(wt%)	Type	Surfactant	(°C)	(MPa)	(gm)	Gravity	(MPa)
86	0.498	1050	3.5%	0%		no	350	5.9	0	13.7	0.10
88	0.497	1050	6.2%	0%		no	354	10.4	0	13.6	0.10
90	0.505	1050	9.2%	0%		no	350	11.7	0	13.6	0.10
94	0.501	1050	1.2%	0%		no	354	2.9	0	13.6	0.10
96	0.500	1050	0.0%	0%		no	350	0.9	0	13.9	
100	0.494	1050	6.1%	0%		yes	358	8.3	0		0.10
106	0.488	1050	7.3%	1%	Mo	yes	405	12.5	5.2	16.9	0.93
108	0.384	784	6.0%	1%	Fe-III	yes	412	14.4	0	17.5	1.27
110	0.495	1050	6.1%	0%		yes	354	8.2	0	14.0	0.10
112	0.492	1050	6.0%	0.25%	Мо	yes	403	12.2	9.6	17.4	0.93
114	0.375	784	6.0%	1%	Co-II	yes	403	14.0	10.7	19.3	1.34
116	0.493	1050	6.0%	0.25%	Mo	yes	428	20.0	33.8	18.3	2.58
120	0.489	1050	6.0%	1%	Fe-III	yes	402	12.0	1	16.8	0.86
122	0.493	1050	6.0%	0.25%	Fe-III	yes	405	12.8	1	17.9	0.96
124	0.377	784	6.0%	1%	Cu	yes	407	15.0	3.2	19.3	1.75
126	0.491	1050	6.0%	0.25%	Fe-III	yes	429	19.4	25	22.0	2.38
2	0.378	784	6.0%	0.25%	Fe-III	yes	359	8.6	0	•	0.58
4	0.494	1050	6.0%	0%		yes	401	11.8	0.5	16.9	0.79
6	0.493	1050	30.0%	0.25%	Fe-III	no	402	28.5	0	17.0	0.79
8	0.376	784	6.0%	1%	Zn	yes	361	9.3	0	13.7	0.10
10	0.491	1050	30.0%	1%	Co-II	no	405	29.4	9.2	16.8	1.13
12	0.376	784	6.0%	1%	Fe-III	yes	356	8.0	0	13.7	0.10
14	0.489	1050	1.2%	1%	Co-II	yes	403	7.2	31	19.9	1.82
16	0.375	784	6.0%	1%	Co-II	yes	358	8.2		14.2	0.10
18 ·	0.491	1050	6.0%	1%	_Co-II_	по	403	12.3	6.2	17.7	1.07
20	0.376	784	6.0%	1%	Zn	yes	385	10.6	0	15.6	0.31
21	0.374	784	5.8%	1%	Co-II	yes	360	7.7	0	14.2	
22	0.377	1050	5.8%	1%	Ni	yes	356	9.1		13.7	
29	0.526	1050	6.0%	0.25%	Fe-III	yes	413	23.8	31.5		

The extent of reaction can be gauged by the change in API gravity from the feed gravity of 13.5, by the amount of coke produced and by the amount of gas produced as measured by the final pressure. Table 1 indicates that experiments in which the peak temperature was below about 400°C show little evidence of reaction. Two of the three experiments, 116 and 126, showing the most reaction reached temperatures above 425°C. Results from the third experiment of this group, 29, indicate nearly as much reaction as runs 116 and 126, but it only reached 413°C. However, this run was held at the plateau temperature for an extended period of time, 150 minutes versus the normal 30 minutes.

PRESSURE DATA ANALYSIS

The first series of experiments (86, 88, 90, and 94) were performed using no catalyst and no surfactant. The maximum temperature was limited to about 350°C. No significant pyrolysis appeared to occur in any of these runs. However, the maximum pressure reached in each run varied over a considerable range. This was a direct result of the varying amount of water included in the mixture. The pressure responses as a function temperature are plotted in Fig. 2. Included in the figure is the vapor pressure of water. The measured pressure for each experiment

tracks the vapor pressure of water up to a given temperature. The point of departure increases in temperature with the amount of water in the feed mixture.

Figure 2. Pressures for low temperature runs with no surfactant or catalyst.

One explanation for the behavior shown in Fig. 2 is that all the water eventually evaporates. Consequently, the measured autoclave pressure deviates from the water vapor pressure curve because the liquid water phase vanishes. The results shown in Fig. 2 qualitatively are consistent with this hypothesis since the deviation from the water vapor pressure curve occurs and higher pressures in experiments in which more water is present. In Table 2, estimates of the amount of water in the vapor phase have been made for each these runs based on a simple estimate of the void volume and vapor density. The vapor density (assumed to be steam) was obtained from steam tables. The temperatures shown in the table were obtained by estimating a value at which the first significant deviation of the measured pressure from the water vapor pressure was noted for each run. These estimates indicate that deviation from the water vapor pressure curve occurs before all the water is in the vapor phase. This suggests that the liquid water fugacity is reduced by some mechanism. The simplest explanation is that the water is partially soluble in the oil phase and its activity coefficient is such that its fugacity is less than that of a pure water phase.

Table 2. Estimate of the amount of water in the vapor phase.

_	Water	Т	Sat. Water Density	Vapor Volume	Water Vapor, % of Total
Exp.	(wt. %)	(°C)	(kg/m**3)	(cc)	<u>Wate</u> r
94	1.2	190	6.394	491	50%
86	3.5	260	23.72	477	65%
88	6.2	300	46.21	478	72%
90	9.2	310	54.58	482	57%

Water is known to be somewhat soluble in oils. The results in Table 2 suggest that water in oil solubilities of 0.5 to 5 wt% would be required. Hooper, Michel, and Prausnitz² have summarized data for water-organic mixtures including components related to crude oils. They show water solubility in organics increases with temperature, as suggested by Table 2, and solubilities of as high as 80 mol% are reported. The solubility indicated by Table 2 translated into a mole basis are approximately 8-90 mol%. Therefore, it is concluded that water solubility in the oil phase is an important consideration in understanding the pressure behavior of the autoclave experiments.

To further explore the nature of the pressure responses, a computer model, the Autoclave Simulator Model (ACS), has been employed. This model, describe more fully in reference 3, was developed to compute the pressure response of a closed autoclave system undergoing a heating and cooling sequence. The model solves mass balance equations and equilibrium constraints for a system which may include decomposition reactions that generate new species. The model can use an ideal gas assumption to compute gas phase component fugacities or a several simple equation-of-state models including the Redlich-Kwong equation. Provisions have been made in the liquid phase to handle the partial solubility of water in an oil phase. Changes in liquid densities are assumed available from simple temperature density tables. Fugacities of liquid components can be computed using an ideal mixing assumption or a simple Hilderbrand-Scatchard model⁴.

The ACS model was used to look more carefully at the pressure behavior of the first series of experiments. Since the pressures and temperatures reached in these experiments are high relative to the critical point of water (374.2°C and 22.05 MPa) nonideal behavior in the gas phase was included by using the Redlich-Kwong equation of state option. The pure component vapor pressure of the constituents was estimated using simple corresponding state model based on the component's normal boiling point⁵. However, the water vapor pressure was obtained from steam tables. Results for simple water-nitrogen only autoclave runs indicate that computed results obtained utilizing the simple Redlich-Kwong equation to compute gas phase fugacities did a fairly good job in matching the measured pressure response. See Appendix II for comparisons between computed and measured pressures.

Pseudocomponents are used to model the complicated crude oil composition. These pseudocomponents and their properties were obtained by using facilities available in a commercial process simulation product, ASPEN PLUS. Using measured boiling point curves, the following set of pseudocomponents were developed to represent the crude oil used in the experiments. They are listed in Table 3 along with their important characterizing properties.

Table 3. Pseudocomponents used to simulate crude oil

Name	MW (gm/mole)	wt %	Specific gravity	Boiling Point (°C)	Critical Temp (°C)	Critical Pres (MPa)	Acentric Factor	API Gravity (°)
HNAPH	142	5.00	0.844	186	387	2.61	0.37	36.1
KERO	178	6.00	0.877	241	443	2.19	0.46	29.9
AGO	228	12.00	0.911	304	504	1.83	0.57	23.7
LVGO	307	16.10	0.954	388	583	1.48	0.73	16.9
HVGO	411	26.80	1	483	668	1.21	1	10.4
V.R	540	34.10	1.04	588	759	0.99	1.29	4.4

The first set of computations was done to confirm the importance of the water in oil solubility effect. In the calculations, water was assumed insoluble in oil at all temperatures. Results of the calculations are shown in Fig. 3. The simple model does a fairly good job in matching the no water Experiment 96. However, for those runs containing water, the model predicts, in general, considerably higher pressures than those measured.

Figure 3. Experimental and computed pressure responses for runs with no surfactant or catalyst assuming no solubility of water in the oil phase.

The model calculations were repeated assuming some solubility of water in the oil phase. The amount of solubility was adjusted to give the best fit of the pressure data. The solubility curve developed was constrained to maintain a smooth solubility behavior with temperature. The results of the calculations and the solubility curve used are shown in Figs. 4 and 5. Although not perfect, the computed results agree much better with the measured pressure data than the pressure computed assuming no water solubility.

Figure 4. Experimental and computed pressure responses for runs with no surfactant or catalyst assuming some solubility of water in the oil phase.

Figure 5. Water solubility in oil used in computing results for experiments in which no surfactant is present.

In the model, the activity coefficient of water dissolved in the oil was estimated using a simple relation suggested by relations used in the ASPEN PLUS6 simulator package. The simple solution theory relation available in

ACS is inadequate since it does not correctly predict the activity coefficient at the point of full water saturation of the organic phase. This activity coefficient must be given by

$$\gamma_1 = \frac{1}{x_1},$$

where x_1 is mole fraction of water in the oil phase. For conditions below saturation the following simple relation is incorporated into the model

$$\gamma_1 = \frac{1}{\left(x_1^s\right)^{\alpha_s} x_1^{1-\alpha_s}},$$

where x_1^s is the water mole fraction at saturation at the temperature of interest and α_s is a parameter. An α_s equal to one was used in the calculations which leads to a constant activity coefficient.

After the initial series of runs, most of the experiments were done using a surfactant to increase the contact between oil and water phases. It was found that surfactant influenced the pressure response by reducing it somewhat with respect to the runs with no surfactant and limited water content. This is illustrated in Fig. 6 where the pressure responses from a number of surfactant containing runs are plotted. All these runs had a 6 wt% water content in the initial oil-water mixture. Three pressure curves computed using the ACS model are also shown in the figure. The computed curves were generated using different assumptions about the solubility of water in the oil phase: 1) no water solubility; 2) solubility used to match the no surfactant data; and 3) a solubility curve shifted to match the data for systems with surfactant present. Note that the data for all runs is fairly consistent below about 400°C and is matched fairly well by the pressure computed using the shifted solubility curve. The rapid increase in the pressure above 400°C, seen in Fig. 6, is a result of gas production by the pyrolysis reactions in this region.

Figure 6. Experimental and computed pressure responses for runs have a 6 wt% water content and surfactant present. The computed results are shown for three different assumptions concerning water solubility in the oil phase.

The shifted solubility curve was obtained from the no surfactant curve by multiplying by a simple factor and extending the relation above 350°C. The curves are compared in Fig. 7.

Figure 7. Water solubility in oil for surfactant and nonsurfactant systems

REACTION EXTENT—GAS AND COKE PRODUCTION

The amounts of coke and gas produced are both important measures of the extent of pyrolysis that has occurred. They are also important since they represent potential oil loss to any upgrading process. In addition, vapor evolution can play an important role in determining the system pressure. Unfortunately, experimental complications prohibit directly measuring these parameters. It is difficult to obtain unambiguous coke measurements from the final product because of separation and collection problems. The gas evolution measurements are complicated by condensation and solubility of vapors at low temperatures and the presence of large water partial pressures at elevated temperatures.

Probably the simplest way to deal with the vapor equilibria problem is to assume that the only products of pyrolysis are coke and species which can be detected in the vapor phase at the end of the experiment. Although this assumption neglects, for now, the production of oil components, it allows a useful first look at the pressure temperature behavior of the system, particularly at modest temperatures. The gas species, detected by GC analysis, include hydrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, methane, ethane, ethylene, propanes, and butanes.

A simple model was constructed using the ASPEN PLUS commercial simulation package to look at the end state of the system. The ASPEN PLUS simulator is primarily tailored for continuos processes. However, through proper choice of modules and other specifications it can be made to simulate the end point, or other selected intermediate points in the batch autoclave experiments. ASPEN PLUS was used for this purpose because it has a rich variety of property models, several of which are tailored for use in hydrocarbon systems. In addition, we plan to use this process simulator package to develop a process model for aqueous pyrolysis.

A listing of the ASPEN PLUS model in ASPEN PLUS input language is given in Appendix III. Several property models available in ASPEN PLUS were explored, but final calculations were done using the GRAYSON property set. This property set was developed for hydrocarbon and light gas containing systems. It is applicable to temperatures between 200-700 K and pressures below 21.3 MPa. It uses the Grayson-Streed correlation for reference state fugacity coefficients and the Scatchard-Hilderbrand model for activity coefficients. The Redlich-Kwong equation is used for vapor fugacities.

The model is setup so that for a given assumption about the pyrolysis stoichiometry, extent of reaction and system temperature, vapor and liquid compositions are computed which satisfy the desired mixture density. This leads to a computed system pressure. The mixture density is established by the amount of feed to the autoclave and the autoclave volume. For each run in which significant system pressure was left after cool down a set of stoichiometric parameters were determined using the ASPEN PLUS model which yielded a fit to the gas composition at the end of the cool-down period.

In doing the fit, carbon monoxide was not included since it appeared in only four of the runs and was at low levels. Also hydrocarbon species above methane were lumped into a single alkane species for each carbon number. Although there is the possibility of the water-gas-shift reaction occurring and involving some of the water, it was not explicitly included as a reactant. The temperatures are fairly low and the amount of hydrogen and carbon monoxide production in the runs was relatively low. The crude oil was modeled with five pseudocomponents as described previously.

Table 4 list the results of the fitting procedure. The reaction extent is measured as a fraction of initial crude oil which has reacted. The coke fraction is a weight fraction of reacted oil which ends up as coke. In the analysis, coke was assumed to be pure carbon. The gas stoichiometry is given as ratios to methane production. The total assumed weight of gas is given by the product of the reaction extent and one minus the coke fraction. The term gas is used here as shorthand for light components produced by the pyrolysis. All these components are not in the gas after the cool-down period. For example, for Run 126, the percentages of each component computed to be in the vapor phase at the end of the cool-down period, when the autoclave conditions were 25°C and 2.38 MPa, were the following: CO₂ - 63%, H₂S - 22%, H₂ - 98%, CH₄ - 78%, C₂'s - 44%, C₃'s - 21%, and C₄'s - 6%.

Table 4. Estimate of extent of reaction, coke fraction and gas stoichiometry for runs with significant gas production grouped according to catalyst present.

4 21 2	
mm.	

	Reaction	Coke			G	as Stoichio	metry		
Run	Extent	Fraction	CO ₂	H ₂ S	H_2	CH ₄	C2's	C3's	C ₄ 's
120	0.040	0.500	0.305	0.200	0.130	1.000	0.352	0.320	0.130
122	0.047	0.470	0.217	0.104	0.107	1.000	0.356	0.320	0.280
126	0.115	0.480	0.121	0.062	0.025	1.000	0.390	0.269	0.150
6	0.043	0.470	0.225	0.126	0.107	1.000	0.323	0.255	0.190
29	0.122	0.540	0.100	0.000	0.058	1.000	0.296	0.152	0.120

Mo

	Reaction	Coke			G	as Stoichio	metry		
Run	Extent	Fraction	CO ₂	H ₂ S	H_2	CH ₄	C2's	C ₃ 's	C ₄ 's
106	0.039	0.300	0.180	0.000	0.063	1.000	0.400	0.380	0.400
112	0.052	0.440	0.290	0.120	0.087	1.000	0.380	0.410	0.460
116	0.147	0.520	0.148	0.030	0.054	1.000	0.386	0.290	0.200

Co

	Reaction	Coke		Gas Stoichiometry					
Run	Extent	Fraction	CO ₂	H ₂ S	H_2	CH ₄	C2's	C3's	C ₄ 's
114	0.072	0.450	0.225	0.024	0.028	1.000	0.401	0.393	0.330
10	0.064	0.420	0.214	0.024	0.160	1.000	0.365	0.368	0.330
14	0.094	0.685	0.172	0.000	0.396	1.000	0.262	0.197	0.130
18	0.038	0.330	0.225	0.008	0.295	1.000	0.326	0.278	0.140

Although results are shown for all the catalysts, the current focus is on Fe-III. More runs were done with this catalyst and as a result the remaining analysis related to stoichiometry and kinetics will deal only with the Fe-III runs. Analysis of the Fe-III runs show a remarkably consistent coke fraction averaging about 0.5. There is no trend in coke yield, as a fraction of total oil reacted, with extent of reaction. The gas stoichiometry is not as consistent as the coke yield. There appears to be some trend in fraction of hydrogen and carbon dioxide with extent of reaction. The data suggest that at higher conversions these two components tend to make up a lower fraction of total gas production. The C2's remain very consistent from run to run. Less consistency is seen in the other components, with the highest variation in the H2S fraction.

An average stoichiometry was obtained from the Fe-III data and is listed in Table 5. Run 29 was omitted from the average because H₂S was not reported. This stoichiometry was arrived at assuming that the listed components are the only reaction products. Undoubtedly, other components are formed but are too heavy to show up in any significant way in the vapor phase at room temperature. However, some information can be obtained from the changes in API gravity of the oil. This information can be used to speculate about additional changes occurring during the pyrolysis reactions.

Table 5. Average reaction stoichiometry.

	Weight Fraction	Gas - Ratio with CH4 (mol/mol)	Gas - Ratio with Total Gas (mol/mol)
Coke	0.5		
CO ₂	0.070	0.19	0.088
H ₂ S	0.034	0.12	0.055
H ₂	0.0015	0.09	0.041
CH ₄	0.133	1	0.461
C2's	0.085	0.34	0.157
C ₃ 's	0.095	0.26	0.120
C4's	0.082	0.17	0.078

The simplest method of incorporating the change of API gravity into a consideration of overall reaction stoichiometry is to make the simplifying assumption that, in addition to the components already listed, a single relatively light oil is a product of the pyrolysis of the crude oil. To further simplify the system it is assumed that the ratio of this new oil to production of other components is fixed. With these assumptions and the ASPEN PLUS model, computations were done in which the relative amount and nature of the light product oil was adjusted in an effort to obtain the best fit for the measured API gravities for the Fe-III experiments. The results are shown in

Table 6. The light oil component used was a pseudocomponent with a molecular weight of 109 amu and an API gravity of 45°. This component was generated by ASPEN PLUS as one of the potential cuts for describing a crude oil representing the oil fraction with an average boiling point of 121°C. This cut is the next lightest below those present in the feed crude. An even lighter cut was tried, having a molecular weight of about 76 amu. However, this component had enough volatility that upon reduction of pressure to atmospheric levels insufficient material was computed to remain in the liquid to yield the measured API gravity changes.

Table 6. Computed oil gravity assuming a weight fraction light oil production of 0.6. The feed crude had an API gravity of 13.5.

Run	Measured API Gravity	Computed API Gravity	Reaction Extent
108	17.5	18.1	0.161
120	16.8	16.5	0.112
122	17.9	17.3	0.129
126	22.0	22.3	0.340
6	17.0	16.9	0.118
29	not available	23.4	0.355

It was assumed that the oil used in the gravity measurements was represented by the liquid which would result from flashing the final mixture to one atmosphere and separating out the coke and free-water phase. Note this assumes the vapor above the oil is light gases. This is equivalent to assuming that the sample was kept in a sealed container after depressurization and large amounts of air were not swept over its surface.

The match of measured gravities with this simple model is remarkably good. However, the addition of this somewhat volatile component has the potential for altering the final equilibrium pressure. This is a result of added volatility, but more importantly the change in the liquid properties. This effect was reasonably small and was compensated for by readjusting the reaction extent. The reaction extent used is listed in Table 6. Most of the difference in reaction extent between those reported in Tables 4 and 6 is a result of the introduction of a major new product of the reaction, the light oil, and not the minor change in phase equilibria. The adjustment to reaction extent to compensate for changes in equilibria was only a few percent.

So far the issue of reaction rate has not been addressed. Clearly, the actual changes occurring are very complex and the simplified stoichiometry used above, and any simple kinetic expressions based on them, are rough engineering approximations. However, rough engineering approximations are useful in helping to describe conditions for a proposed process. The simplest rate expression that has a chance of capturing some aspects of the true behavior is one based on the assumption that all

components of the feed oil decompose at the same rate and with the same basic stoichiometry when viewed on a weight basis. If this is true, then the reaction rate for experiments should be roughly constant at a given temperature since the estimated extent of the reactions, as a fraction of original oil, is fairly small.

One way to test this hypothesis is to look at the pressure behavior of the runs during the plateau temperature period. Since light gases are assumed to be products of reaction, one would expect that the pressure of the system would increase with time in some linear fashion. The details of the relation between pressure increase and light-gas production is complicated and will be addressed below. However, here it is useful to determine if the pressure increases are linear during the plateau period. The plots shown in Fig. 8 do indeed indicate a near linear increase in pressure during the plateau period, even for Runs 126 and 29 in which the extent of reaction is as high as 36%.

Figure 8. Plateau period of the Runs 108, 120, 122, 126, 6 and 29 demonstrating the near linear increase in autoclave pressure.

The ACS model was developed to allow rate controlled gas release to be incorporated into the modeling of change within a sealed autoclave. This model was used to integrate the proposed simple first-order reaction over the course of the heating and cooling sequence of those Fe-III experiments in which significant pyrolysis occurred. The assumed reaction stoichiometry was that described above, including the production of light oil. The overall stoichiometry used is listed in Table 7. Other model parameters used relating to densities and phase equilibria are given in Appendix IV.

Table 7. Average reaction stoichiometry including the light oil product P-OIL.

	Weight Fraction
Coke	0.2
P-OIL	0.6
CO ₂	0.028
H ₂ S	0.014
H ₂	0.0006
CH ₄	0.053
C2's	0.034
C3's	0.038
C4's	0.033

The pre-exponential kinetic values which best fit the coke yield data for the Fe-III runs are listed in Table 8 along with the computed reaction extent for each run. These were found using the average stoichiometry given in Table 7 and adjusting the pre-exponential rate factor until the best fit of the final autoclave pressure, oil gravity and coke production were obtained. The values of the factors determined in this way are fairly consistent from run to run. An extent-weighted average of these values yields an value of $1.7 \times 10^8 \, \mathrm{s}^{-1}$.

Table 8. ACS determined rates and computed extent of reaction.

Run	Pre-Exponential (s^{-1})	Reaction Extent
108	1.89x10 ⁸	0.145
120	1.29x10 ⁸	0.099
122	1.36x10 ⁸	0.110
126	1.93x10 ⁸	0.325
6	1.45x10 ⁸	0.109
29	1.84x10 ⁸	0.368

Since detailed analytical information on the crude oil and products is limited, no attempt in the modeling was explicitly made to guarantee individual atom balances, only overall weight balances are used. However, it is of interest to determine the results of an atom balance based on the stoichiometry shown in Table 7. Analytical data is only available for the sulfur content of the crude oil. Using this number and average values for crude oils from reference 7, in addition to values for the P-OIL product which fall within the range for crude oils (see Table 9), atom balances on carbon, hydrogen, and sulfur were computed. Nitrogen is omitted from the balance since no information on nitrogen bearing products was available. The carbon and hydrogen were balanced by using the atomic composition of oils shown in Table 9.

For oxygen, the balance indicates an excess of oxygen in the product mix. This is attributed to water which enters the reaction as a reactant during secondary reactions such as would occur in the water-gas-shift reaction. The amount of water consumed based on the average stoichiometry would be equal to approximately 4-5 wt% of the feed for runs with the highest extent of reaction.

Table 9. Oil atomic composition in weight percent.

_	· C	H	0	S
CRUDE	85.46%	12.00%	1.00%	1.54%
P-OIL	85.10%	14.00%	0.05%	0.40%

COMPUTED PRESSURE MATCHES—RUNS WITH REACTION

Using the average stoichiometry given in Table 7 and the average rate model which is given by

rate =
$$W_{crude} 1.7 \times 10^8 \exp\left(\frac{-20000}{T}\right)$$

where $W_{\it crude}$ is the amount of crude oil in the liquid phase and the rate is given on a weight-per-second basis, computations were performed to look at the time evolution of the pressure within the autoclave during experiments in which significant gas was produced. Results are shown in Fig. 9 for runs with highest gas evolution, runs 126 and 29. Run 126 reached a maximum temperature of 429°C while run 29 was held at 413°C, but the temperature in run 29 was held longer so that the total reaction extent was approximately the same. The calculations were done with the original water solubility curve, for the case in which a surfactant is present, shown in Fig. 7. Notice, that during the active reaction period, the time at highest temperature, the model under predicts the rate of increase in pressure.

Some work was done to determine why the model under predicts this rise. Two candidate reasons are that the equilibrium relations change in a fashion not captured by the model or that a component is formed which appears in the vapor phase at elevated pressures but is absent from the vapor when the system is cooled. The component P-OIL behaves in this way and is present in the model used to develop the curves shown in Fig. 9. Other model products such as pentane, toluene, and n-decane were included in the reaction scheme. None seem to significantly improve the fit at the peak pressures.

However, some improvement in the pressure fit was found when the water solubility relation was modified to allow more water to enter the vapor phase at the higher temperatures. A modified solubility was developed which incorporated this effect and was used to compute the improved pressure matches for Experiments 126 and 29 shown in Fig. 10. The solubility modification simply involved not extrapolating the solubility curve, shown in Fig. 7, linearly for temperatures beyond

350°C, but instead setting the solubility at 430°C to 9 wt%. This change in solubility should be viewed as a means of changing the activity of the water in the oil phase. The solubility in conjunction with the simple activity coefficient model described previously sets the fugacity of the water dissolved in the oil and, thus, the fugacity of water vapor in the gas phase.

Figure 9. ACS calculated pressures using average stoichiometry and average expression.

Figure 10. ACS calculated pressures using average stoichiometry and average expression with a flattened water solubility curve.

One of the ultimate aims of the current work is to develop an ASPEN PLUS based model for the proposed upgrading process. For this reason, and because of the more sophisticated property models available in the ASPEN PLUS environment, it is of interest to compare ASPEN PLUS computations to the data and the ACS model results. For this purpose, the final overall ACS model which included a flattening of the solubility model was used.

In ASPEN PLUS, the solubility model is forced to have the following form with respect to temperature

$$s = \exp\left(c_1 + \frac{c_2}{T} + c_3 T\right)$$

where s is the solubility of water in oil on a mole fraction basis, and the c's are coefficients specific to each oil component used. This constraint does not allow exactly the same solubility function to be used in both the ACS model and ASPEN PLUS model. However, the parameters $c_1 = 24.35$, $c_2 = -8000$, and $c_3 = -0.019$ gives computed points similar to those used in the ACS model calculations, these are compared in Table 10. In the table, a molecular weight of 389 amu was used in computing the values. This is the average value for the crude oil based on the pseudocomponent representation used. As describe earlier, the ACS uses a solubility model which is based simply on total weight of oil and water in the oil phase. Using the same coefficients for all crude oil components in the ASPEN PLUS model along with the average stoichiometry given above, pressures where computed at several reaction times for runs 126 and 29. The reaction extent was taken from results computed by the ACS model. Fig. 11 shows that the computed pressure results obtained from the ASPEN PLUS model and the ACS model are very similar. Both do a fair job in computing the autoclave pressures.

Table 10. A comparison of water solubility used in the ASPEN PLUS model and the ACS model.

Temperature	ASPEN PLUS	ACS
(°C)	Water (wt%)	Water (wt%)
25	0.0%	
50	0.0%	
100	0.1%	0.1%
150	0.4%	
200	1.2%	2.8%
250	3.2%	4.8%
300	6.7%	8.0%
350	10.6%	11.0%
400	10.8%	
425	9.3%	9.0%

Figure 11. Pressures computed using the ASPEN PLUS model compared to experimental data and results from the ACS model for runs 126 and 29.

CONCLUSIONS

Data and modeling work show that autoclave pressures for heavy-crude oil/water systems can exhibit total pressures well below the vapor pressure of water at conditions in which not all the water is in the vapor phase. This is a result of increased solubility of water in the oil phase at elevated temperatures. Further, pressure measurements indicate that the presence of a surfactant increases the apparent solubility. A simple water-in-oil activity coefficient model was used to fit pressure responses for autoclave experiments.

Autoclave aqueous pyrolysis runs in which temperatures of 400°C or above were reached exhibited measurable gas production. This gas production resulted in pressure increases during periods of constant temperature. These pressure increases were remarkably linear with time. A simple first-order decomposition is consistent with such a response if essentially all the original crude oil undergoes similar pyrolysis decomposition. A first-order reaction model was constructed for the runs in which Fe-III was used as a catalyst. The model did a fair job in matching gas and coke production as well as change in oil gravity.

The first-order reaction model was used in a model developed to look at the evolution of pressure within an autoclave with time. Also, an ASPEN PLUS based model gave similar results for selected points. The models tend to under predict the rate of pressure rise with time at the plateau temperatures. A number of different reaction products were postulated in an attempt to overcome this deficiency. These attempts met with little success. The one parameter which seemed to improve the performance was to assume that at temperatures above 350-400°C, the activity coefficient of water in oil increased, releasing more water vapor into the vapor phase. This was modeled as a decrease in water solubility in the oil phase.

Although the simple reaction model did a fair job in recreating the pressure history of the autoclave experiments, more work is probably warranted. In particular, the problem of matching the isothermal pressure rise needs further exploration, as does the cause of variability in measured gas composition. If the measured gas composition variation persists, a more complicated reaction scheme than the simple one-step pyrolysis reaction used here will be necessary. A more complicated reaction scheme may also help resolve the isothermal pressure rise problem. Also a better model for the activity of water in the oil phase would be required to improve predictive capability. Finally, post-run analysis of the change in the makeup of the oil phase would probably help in formulating a better model for the improvement in oil gravity. This may also help in understanding the vapor-liquid equilibrium behavior.

REFERENCES

- 1. J. G. Reynolds, A. M. Murray, E. V. Nuxoll, and G. A. Fox, "Upgrading of Heavy Oil from the San Joaquin Valley of California by Aqueous Pyrolysis," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-122472 (1995).
- 2. H. H. Hooper, S. Michel, and H. M. Prauznitz, Correlation of Liquid-Liquid Equilibria for Some Water-Organic Liquid Systems in the Region 20-250 °C, Ind. Eng. Chem. Res. 27, pp. 2182-2187, (1988).
- 3. C. B. Thorsness "A Model for Simulating Autoclave-Reactor Pressure Histories," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-122947 (1995).
- 4. R. C. Reid, J. M. Prauznitz, B. E. Poling, The Properties of Gases and Liquids, Fourth Edition, (McGraw-Hill Book Company, New York, 1987) pp. 284-286.
- 5. R. C. Reid, J. M. Prauznitz, B. E. Poling, *The Properties of Gases and Liquids, Fourth Edition*, (McGraw-Hill Book Company, New York, 1987) pp. 205-206.
- 6. ASPEN PLUS Reference Manual Volume 2 Physical Property Methods and Models, (Aspen Technology, Inc., Cambridge, Massachusetts, 1994) Chapter 3 p. 101, Chapter 6 pp. 3-5.
- 7. J. G. Speight, Ed., Fuel Science and Technology Handbook, (Marcel Dekkar, Inc., New York, 1990) pp. 209-210.

APPENDIX I.

CRUDE OIL DATA

Selected data for Midway Sunset crude Oil analyzed by Core Laboratories:

API Gravity	11.8° (60/60°F)
Pour Point	+60°F ASTM-D-97)
Sediment and water	5.6 wt% (ASTM D-96)
Sulfur, Total by x-ray	1.54 wt% (ASTM D-4294)

Cuts

	API Gravity	Wt%
1. IBP-375 °F	371.1	0.87
2. 375-500 °F	29.9	5.36
3. 500-620 °F	23.7	10.8
4. 620-800 °F	16.0	14.79
5. 800-950 °F	13.8	21.94
6. 950+ °F	4.6	46.08

This information along with boiling point curves for each cut were used to determine the pseudocomponent properties and amounts given in the report. The analysis above is actually from oil which has undergone surface dewatering and the loss of some light ends. To arrive at the final weight distribution given in the report, the lighter ends were increased until the mixture had an API gravity of 13.5°—approximately equivalent to that used in the laboratory experiments. The increases used preserved the monotonic nature of component amounts with API gravity.

APPENDIX II.

WATER-NITROGEN SYSTEM

Two autoclave runs were done with a water nitrogen system to help evaluate the ability of the ACS model to compute autoclave pressures. The first run, #32, was a system with excess water. The amount of water initially in the 1050 cm³ autoclave, 0.3 kg, insured that liquid would be present up to the critical point. In the second run, #34, a much smaller amount of water, 0.033 kg, was used. In this case liquid disappeared before reaching the critical point. For both runs, the system was initially pressurized at room temperature to approximately 1.6 MPa with nitrogen.

In Fig. II-1 computed pressures for Run 32 are compared to measured autoclave pressures. The Redlich-Kwong equation of state was used to compute gas phase fugacities. Results using the ideal gas law yielded similar pressure results. However, the computations using the Redlich-Kwong equation result in twice as much water in the vapor phase as is the case for the assumption of ideal behavior. This is primarily a result of the more accurate gas phase density estimates provided by this equation. The Redlich-Kwong results estimate a gas phase compressibility of 0.57 at 358°C.

Figure II-1. Computed pressure for run 32 using the ACS model and the Redlich-Kwong equation of state for gas phase fugacities.

In Fig. II-2 results for Run 34 are plotted. Here the pressure response based on the Redlich-Kwong equation differs from that obtained assuming ideal gas behavior. This is because liquid disappears and as a result predicting the amount of water in the vapor phase influences the computed pressure directly.

Figure II-2. Computed pressure for run 34 using the ACS model and the Redlich-Kwong equation of state and the ideal gas law for gas phase fugacities.

For both runs the ACS model using the Redlich-Kwong equation does a fairly good job in calculating the autoclave pressure as a function of temperature.

APPENDIX III.

ASPEN MODEL

The ASPEN PLUS model described below was used to look at selected states of the autoclave system. It allows three separate states of the system to be computed in one run. The basic philosophy is to use other means to establish the extent of any reactions which occur. This information along with initial conditions are then used to compute the pressure of the autoclave system. The pressure is determined by using an ASPEN PLUS DESIGN-SPEC to set the total density of the autoclave. This density is known from initial loading information.

The basic design of the model relies on two input files. The first is an ASPEN PLUS input file which defines the model. The second file is an ASCII data file to define the parameters specific to a run. The model is structured in this way for two reasons. One reason is to allow repeated runs to execute faster. Although the computation time for the model on an HP-9000/730 is less than a minute, even this time can be annoying when many runs are to be done. By isolating the basic run specific data, the ASPEN PLUS's rerun option can be employed which greatly speeds up execution. The other reason, probably more important, is to allow documentation of runs to be maintained in a more economical fashion and allow model revisions to be made with a minimum of effort. If the basic run data is put directly into the input file then when a revision in the model structure is made, these same modifications must be made in all input files representing other runs. With the basic structure of the model specified by a single input file and the run data separated, only one file needs to be changed to modify the model. Also the run data information is only about 50 lines including generous commenting, while the ASPEN PLUS input file was 1300 lines long.

The description of the model will assume that the reader is familiar with the ASPEN PLUS input language. A complete listing of the model with line numbers is given at the end of this appendix along with a sample input file.

The model is broken into four flowsheets. This is done to allow for the possibility of using different property models in different flowsheet sections. The first three are very similar and use MIXER, FLASH2 and RSTOIC modules to perform the required calculations. Each of these flowsheets works on a separate, but identical, feed stream. The feed streams are meant to represent the material loaded into the autoclave reactor. The simulator is most naturally a continuous flow simulator and the autoclave is a closed system. To simulate the closed system the ratio of flow rates of input material is set so to give the proper ratios and set at levels such that one second of time yields the same quantity of material as is in the autoclave. The fourth flowsheet section is used to simulate what occurs when the autoclave is depressurized. This section uses results from flowsheet three as input. Consequently, to be meaningful the state of the outlet of flowsheet three should be

equivalent to the end state of the system after cool down and just prior to depressurising.

The following discussion refers to the listing of the ".inp" file located near the end of this appendix. At the start of the file are a number of comment lines and a run title.. Starting on line 25 is the FORTRAN block SETI. This block is used to read input data from the ASCII input file, do some calculations, and then set parameters in computational modules. These parameters include input flow rates as well as temperatures, pressures and extent of oil pyrolysis for each of three desired system states and for the final depressurized state. Also, pyrolysis stoichiometry is set based on information given in the input file. The setting of stoichiometry is rather lengthy because parameters are set for each oil pseudocomponent in each of three RSTOIC modules. Also embedded in the block are a set of default values for all parameters read from the ASCII input file along with a brief description. Generally all default values are overwritten by data from the ASCII data file. The input from the ASCII file is done using a FORTRAN NAMELIST construct. The data in the ASCII file for a typical run is described later.

The next block in the ".inp" file is also a FORTRAN BLOCK. This block, INIT, is meant to run as soon as the primary input stream has been generated by a MIXF module. This block sets the overall system density, which is invariant until depressurization, and is used by the DESIGN-SPEC's to compute system pressure. The next section of the file, from lines 803 to 824, sets up some control and reporting information. For the ASPEN PLUS model itself, English input units have been used since all the information on the crude oil is in English units. However, the computed results are to be reported primarily in SI units.

The next section, lines 825-973, define the property options and sets up the pseudocomponents used to represent the crude oil. The ASPEN PLUS FREE-WATER option is used along with a so called API method for computing liquid volumes tailored for petroleum liquids. A number of possible property model sets are commented out, the preferred GRAYSON set is active. The SOLU-WATER=1 refers to the type of activity model chosen for water in the oil phase. This is the model describe in the body of the text. The list of components includes standard species and several others used to complete the description of the stoichiometry of the oil pyrolysis. The component HHC is a generic name intended to be used for a light hydrocarbon product of pyrolysis not included in the set list. This allows runs in which various species are used without effecting the coding in the model. The current version uses normal butane. If this species is changed, then its molecular weight needs to be set accordingly, see notes in lines 850-851. P-OIL is the assumed oil product of the pyrolysis and its properties are set using its assumed boiling point and gravity. Other oils similar to the pseudocomponents used in the crude representation are included in comment lines for reference. If the properties of P-OIL are changed, then the molecular weight, set in SETI line 544, should be changed as needed. The PROP-DATA paragraph beginning on line 870 is included so that the water solubility parameters for oil components can be modified from their ASPEN

PLUS default values. Solubility of water in all components except the crude oil components are set to very small values. Those component names not included in the COMPONENTS list are for the pseudocomponents used to define the crude oil. For reference a number of types of solubility relations are included in comment lines. The active set is for the modified surfactant solubility set described in the report body. The final portion of this section, lines 917-973, defines the pseudocomponents used to represent the crude oil. This is done using ASPEN PLUS implemented routines to develop amounts and properties from crude oil cut information. This section must be modified if a different crude oil is used in the simulation. The final BLEND paragraph sets the crude oil composition. The comments document how the lighter ends were increased in order to modify the composition of the 11.5 API gravity crude oil to represent the 13.5 API gravity oil used in the experiments.

The next section, lines 974-1006, describes the four flowsheets used in the model. Notice a DUP module is used to feed the same stream to each of the first three flowsheet areas. These three areas perform essentially identical calculations but can have different reaction extents and temperatures. The pressures are set by DESIGN-SPECS based on density as described above. The fourth area allows vapor to flash off setting the desired final pressure.

The next section simply defines default values for input streams. The flow rates are generally overwritten by data from the ASCII input file.

Starting on line 1022 is the block specification section where parameters for all process modules are defined.

The next section, lines 1137-1190, defines the design specifications used to compute the pressure in the autoclave based on a known overall system density. Three DESIGN-SPEC paragraphs are used, one each for flowsheets 1-3.

The final section, starting on line 1191, is a FORTRAN block used to collect selected computed information and print it in a summary table to the ASPEN PLUS report file. This table can be found in the ".rep" file by searching for the "=======" pattern.

As stated above, a given simulation is meant to get its primary input information not from the ".inp" file but rather from a ASCII input file. This file is read with the FORTRAN namelist feature. The namelist format has been slightly augmented by coding in the SETI block to allow comment only lines to be included. The comment lines must begin with "*". A sample input file is included after the ASPEN PLUS input file at the end of this appendix and its contents are briefly describe below. The input variables used can be linked to the ASPEN PLUS file by there names. Some additional comments on variable are present in the ".inp" file.

The first data entry in the sample ASCII input file is on line 5 and sets the amounts of crude oil, water and nitrogen, in kilograms, loaded into the autoclave. Lines 12-21 define the stoichiometry of the pyrolysis reaction. This same stoichiometry is applied to each of the crude oil pseudocomponents. The first two variables "wtfc" and "wtfo" are the weight fraction of reacted component which forms coke (taken as carbon in the model) and the oil product P-OIL. The remaining variables define all other products on a relative mole basis. In the input shown, they are all ratioed to methane.

Lines 25-31 define a measured dry-gas composition and are only included for convenience in looking at the output. They are not used in any of the model calculations. This same comment is true of the next input, the amount of coke in kilograms, in line 34.

Lines 39-44 define the extent of the pyrolysis reactions which are desired to occur in each flowsheet area. The variable "er' is the extent of reaction as a fraction of the reactant (i.e., each crude oil component) and is used as the reaction extent in flowsheet area 3. The variables "fer1" and "fer2" define the amount of reaction occurring in flowsheet area 1 and 2 respectively relative to "er". That is, the extent of reaction in flowsheet area 1 is the product of "er" and "fer1".

The temperatures desired for flowsheet areas is specified in degrees celsius in lines 49-52. With each temperature specification "tcn" where "n" is 1,2 or 3 a corresponding pressure is entered. These pressures are for output only and are not used in the model calculations. The temperature for the fourth flowsheet area is assumed to be the same as that in the third, "tc3", the pressure is set in the ".inp' file to 0.1 MPa in the fourth flow sheet area.

The following is the listing for the ASPEN PLUS ".inp" file.

```
Lawrence Livermore National Laboratory
    C. B. Thorsness
    rstoic.inp. Rev 1.0
10 TITLE 'Model of autoclave (rstoic.inp)'
13 ; Overall stream description
15 ;
16 ;
15
     Input Streams:
     FEEDO - Crude oil stream
17 ;
      FREDW - Primarily water but can include other components
             such as nitrogen
19 ;
20
22 ; Set input parameters
```

```
23
24
25
    FORTRAN SETI
26
          common/usr1/ dens,px1,px2,px3,px4,x(9),vo1,t1c,t2c,t3c,t4c,coke
27
    F
          character line*80,file*20
28
    F
          namelist /indata/ fch4, fc2h6, fc3h8, fhhc, fco2, fh2, fh2s, vol,
                             wtfo, wtfc, x, er, fer1, fer2, t1c, p1, t2c, p2, t3c, p3,
29
    F
30
    F
                              flcr, fln2, flh2o, coke, t4c,p4
31
       Can't set crude flow therfore use two streams
       DEFINE florx STREAM-VAR STREAM-FEEDO VARIABLE=MASS-FLOW
32
33
       DEFINE fln2x MASS-FLOW STREAM=FEEDW COMPONENT=N2
       DEFINE flh2ox MASS-FLOW STREAM=FEEDW COMPONENT=H2O
34
35
                    BLOCK-VAR BLOCK=HTR1 SENTENCE=PARAM VARIABLE=TEMP
36
       DEFINE t1
37
       DEFINE pl
                    BLOCK-VAR BLOCK=HTR1 SENTENCE=PARAM VARIABLE=PRES
                    BLOCK-VAR BLOCK=HTR2 SENTENCE=PARAM VARIABLE=TEMP
38
       DEFINE t2
39
       DEFINE p2
                    BLOCK-VAR BLOCK=HTR2 SENTENCE=PARAM VARIABLE=PRES
40
                    BLOCK-VAR BLOCK=HTR3 SENTENCE=PARAM VARIABLE=TEMP
       DEFINE t3
       DEFINE p3
41
                    BLOCK-VAR BLOCK=HTR3 SENTENCE=PARAM VARIABLE=PRES
                    BLOCK-VAR BLOCK=HTR4 SENTENCE=PARAM VARIABLE=TEMP
42
       DEFINE t4
43
       DEFINE p4
                    BLOCK-VAR BLOCK=HTR4 SENTENCE=PARAM VARIABLE=PRES
44
       DEFINE aext1 BLOCK-VAR BLOCK=R1 SENTENCE=CONV
                                                        VARIABLE=CONV
45
46
           ID1=1
       DEFINE bext1 BLOCK-VAR BLOCK=R1 SENTENCE=CONV
                                                        VARIABLE=CONV
47
48
           ID1=2
       DEFINE cext1 BLOCK-VAR BLOCK=R1 SENTENCE=CONV
                                                        VARIABLE=CONV
49
50
           ID1=3
       DEFINE dext1 BLOCK-VAR BLOCK=R1 SENTENCE=CONV
51
                                                        VARIABLE=CONV
52
           TD1=4
       DEFINE eext1 BLOCK-VAR BLOCK=R1 SENTENCE=CONV
                                                        VARIABLE=CONV
53
54
           ID1=5
       DEFINE fext1 BLOCK-VAR BLOCK=R1 SENTENCE=CONV
                                                        VARIABLE=CONV
55
56
           ID1=6
57
       DEFINE ac1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
58
59
           ID1=1 ID2=CISOLID ID3=C
       DEFINE ach41 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
60
61
           ID1=1 ID2=MIXED ID3=CH4
       DEFINE ac2h61 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
62
           ID1=1 ID2=MIXED ID3=C2H6
63
       DEFINE ac3h81 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
64
65
           ID1=1 ID2=MIXED ID3=C3H8
       DEFINE aco21 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
66
67
           ID1=1 ID2=MIXED ID3=CO2
       DEFINE ah21 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
68
69
           ID1=1 ID2=MIXED ID3=H2
       DEFINE ahhc1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
70
71
           ID1=1 ID2=MIXED ID3=hhc
       DEFINE ah2s1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
72
73
           ID1=1 ID2=MIXED ID3=H2S
                   BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
74
       DEFINE ao1
           ID1=1 ID2=MIXED ID3=P-OIL
75
76
       DEFINE bc1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
77
78
           ID1=2 ID2=CISOLID ID3=C
       DEFINE bch41 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
79
           ID1=2 ID2=MIXED ID3=CH4
80
       DEFINE bc2h61 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
81
82
           ID1=2 ID2=MIXED ID3=C2H6
       DEFINE bc3h81 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
83
84
            ID1=2 ID2=MIXED ID3=C3H8
       DEFINE bco21 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF
85
            ID1=2 ID2=MIXED ID3=CO2
86
```

87		DEFINE bh21 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
88		ID1=2 ID2=MIXED ID3=H2	
. 89			&
90		ID1=2 ID2=MIXED ID3=hhc	_
91		•	£ .
92 93		ID1=2 ID2=MIXED ID3=H2S DEFINE bo1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	
93 94		DEFINE bol BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=P-OIL	&
95	;	IDI-2 ID2-MIXED ID3-F-OID	
96	'	DEFINE cc1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF &	
97		ID1=3 ID2=CISOLID ID3=C	
98		DEFINE cch41 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
99		ID1=3 ID2=MIXED ID3=CH4	
100		DEFINE cc2h61 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
101		ID1=3 ID2=MIXED ID3=C2H6	
102		DEFINE cc3h81 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	€
103		ID1=3 ID2=MIXED ID3=C3H8	
104			&
105		ID1=3 ID2=MIXED ID3=CO2	
106		DEFINE ch21 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF ID1=3 ID2=MIXED ID3=H2	<u>&</u>
107 108			£
109		ID1=3 ID2=MIXED ID3=hhc	œ
110			&
111		ID1=3 ID2=MIXED ID3=H2S	_
112			&
113		ID1=3 ID2=MIXED ID3=P-OIL	
114	;		
115		DEFINE dc1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF &	
116		ID1=4 ID2=CISOLID ID3=C	
117			&
118		ID1=4 ID2=MIXED ID3=CH4	_
119		DEFINE dc2h61 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	€.
120		ID1=4 ID2=MIXED ID3=C2H6	£.
121 _. 122		DEFINE dc3h81 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF ID1=4 ID2=MIXED ID3=C3H8	œ
123			£
124		ID1=4 ID2=MIXED ID3=CO2	_
125			&
126		ID1=4 ID2=MIXED ID3=H2	
127		DEFINE dhhc1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
128		ID1=4 ID2=MIXED ID3=hhc	
129		DEFINE dh2s1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
130		ID1=4 ID2=MIXED ID3=H2S	
131			&
132		ID1=4 ID2=MIXED ID3=P-OIL	
133	;	DEFINE ec1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF &	
134 135		ID1=5 ID2=CISOLID ID3=C	
136			£
137		ID1=5 ID2=MIXED ID3=CH4	•
138		DEFINE ec2h61 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
139		ID1=5 ID2=MIXED ID3=C2H6	
140			&
141		ID1=5 ID2=MIXED ID3=C3H8	
142			&
143		ID1=5 ID2=MIXED ID3=CO2	_
144			&
145		ID1=5 ID2=MIXED ID3=H2	C.
146		DEFINE ehhc1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF ID1=5 ID2=MIXED ID3=hhc	&
147 148			£
149		ID1=5 ID2=MIXED ID3=H2S	~
150			È

151 152	;	ID1=5 ID2=MIXED ID3=P-OIL	
153 154	•	DEFINE fc1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF & ID1=6 ID2=CISOLID ID3=C	
155 156		DEFINE fch41 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF ID1=6 ID2=MIXED ID3=CH4	&
157 158		DEFINE fc2h61 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF ID1=6 ID2=MIXED ID3=C2H6	&
159		DEFINE fc3h81 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
160 161		ID1=6 ID2=MIXED ID3=C3H8 DEFINE fco21 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
162 163		ID1=6 ID2=MIXED ID3=CO2 DEFINE fh21 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
164 165		ID1=6 ID2=MIXED ID3=H2 DEFINE fhhc1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	&
166		ID1=6 ID2=MIXED ID3=hhc	_
167 168		DEFINE fh2s1 BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF ID1=6 ID2=MIXED ID3=H2S	æ
169		DEFINE fol BLOCK-VAR BLOCK=R1 SENTENCE=STOIC VARIABLE=COEF	& ·
170 171	;	ID1=6 ID2=MIXED ID3=P-OIL	
172	•	DEFINE aext2 BLOCK-VAR BLOCK=R2 SENTENCE=CONV VARIABLE=CONV	&
173 174		ID1=1 DEFINE bext2 BLOCK-VAR BLOCK=R2 SENTENCE=CONV VARIABLE=CONV	&
175 176		ID1=2 DEFINE cext2 BLOCK-VAR BLOCK=R2 SENTENCE=CONV VARIABLE=CONV	&
177		ID1=3	_
178 179		DEFINE dext2 BLOCK-VAR BLOCK=R2 SENTENCE=CONV VARIABLE=CONV ID1=4	&
180		DEFINE eext2 BLOCK-VAR BLOCK=R2 SENTENCE=CONV VARIABLE=CONV	&
181 182		ID1=5 DEFINE fext2 BLOCK-VAR BLOCK=R2 SENTENCE=CONV VARIABLE=CONV	&
183		ID1=6	
184 185	;	DEFINE ac2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &	
186		ID1=1 ID2=CISOLID ID3=C	
187			&
188 189		ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h62 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
190		ID1=1 ID2=MIXED ID3=C2H6	-
191		DEFINE ac3h82 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
192 193		ID1=1 ID2=MIXED ID3=C3H8 DEFINE aco22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
194		ID1=1 ID2=MIXED ID3=CO2	
195 196		DEFINE ah22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2	α
197		DEFINE ahhc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
198		ID1=1 ID2=MIXED ID3=hhc DEFINE ah2s2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
199 200		ID1=1 ID2=MIXED ID3=H2S	œ
201		DEFINE ao2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
202		ID1=1 ID2=MIXED ID3=P-OIL	
203· 204	;	DEFINE bc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &	
205		ID1=2 ID2=CISOLID ID3=C	
206		DEFINE bch42 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
207		ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h62 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
208 209		ID1=2 ID2=MIXED ID3=C2H6	œ
210		DEFINE bc3h82 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
211		ID1=2 ID2=MIXED ID3=C3H8	
212 213		DEFINE bco22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CO2	&
214		DEFINE bh22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&

215	ID1=2 ID2=MIXED ID3=H2
216	DEFINE bhhc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
217	ID1=2 ID2=MIXED ID3=hhc
218	DEFINE bh2s2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
219	ID1=2 ID2=MIXED ID3=H2S
220	DEFINE bo2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
221	ID1=2 ID2=MIXED ID3=P-OIL
222 ;	
223	DEFINE cc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
224	ID1=3 ID2=CISOLID ID3=C
225	DEFINE cch42 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
226	ID1=3 ID2=MIXED ID3=CH4
227	DEFINE cc2h62 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF 8
228	ID1=3 ID2=MIXED ID3=C2H6
229	DEFINE cc3h82 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF 8
230	ID1=3 ID2=MIXED ID3=C3H8
231	DEFINE cco22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
232	ID1=3 ID2=MIXED ID3=CO2
233	DEFINE ch22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
234	ID1=3 ID2=MIXED ID3=H2
235	DEFINE chhc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
236	ID1=3 ID2=MIXED ID3=hhc
237	DEFINE ch2s2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
238	ID1=3 ID2=MIXED ID3=H2S
239	DEFINE co2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
240	ID1=3 ID2=MIXED ID3=P-OIL
241 ;	
242	DEFINE dc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
243	ID1=4 ID2=CISOLID ID3=C
244	DEFINE dch42 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
245	ID1=4 ID2=MIXED ID3=CH4
246	DEFINE dc2h62 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
247	ID1=4 ID2=MIXED ID3=C2H6
248 249	DEFINE dc3h82 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF & ID1=4 ID2=MIXED ID3=C3H8
250	
250	DEFINE dco22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF & ID1=4 ID2=MIXED ID3=CO2
252	DEFINE dh22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
253	ID1=4 ID2=MIXED ID3=H2
254	DEFINE dhhc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
255	ID1=4 ID2=MIXED ID3=hhc
256	DEFINE dh2s2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
257	ID1=4 ID2=MIXED ID3=H2S
258	DEFINE do2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
259	ID1=4 ID2=MIXED ID3=P-OIL
260 ;	
261	DEFINE ec2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
262 -	ID1=5 ID2=CISOLID ID3=C
263	DEFINE ech42 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
264	ID1=5 ID2=MIXED ID3=CH4
265	DEFINE ec2h62 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
266	ID1=5 ID2=MIXED ID3=C2H6
267	DEFINE ec3h82 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
268	ID1=5 ID2=MIXED ID3=C3H8
269	DEFINE eco22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
270	ID1=5 ID2=MIXED ID3=CO2
271	DEFINE eh22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
272	ID1=5 ID2=MIXED ID3=H2
273	DEFINE ehhc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
274	ID1=5 ID2=MIXED ID3=hhc
275	DEFINE eh2s2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
276	ID1=5 ID2=MIXED ID3=H2S
277	DEFINE eo2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &
278	ID1=5 ID2=MIXED ID3=P-OIL
	· ·

279			
280	;	DEFINE fc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF &	
281		ID1=6 ID2=CISOLID ID3=C	
282		DEFINE fch42 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
283		ID1=6 ID2=MIXED ID3=CH4	
284		DEFINE fc2h62 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
285		ID1=6 ID2=MIXED ID3=C2H6	
286		DEFINE fc3h82 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
287		ID1=6 ID2=MIXED ID3=C3H8	_
288 289		DEFINE fco22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF ID1=6 ID2=MIXED ID3=CO2	&
290		ID1=6 ID2=MIXED ID3=CO2 DEFINE fh22 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	_
291		ID1=6 ID2=MIXED ID3=H2	&
292		DEFINE fhhc2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	£.
293		ID1=6 ID2=MIXED ID3=hhc	_
294		DEFINE fh2s2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
295		ID1=6 ID2=MIXED ID3=H2S	
296		DEFINE fo2 BLOCK-VAR BLOCK=R2 SENTENCE=STOIC VARIABLE=COEF	&
297		ID1=6 ID2=MIXED ID3=P-OIL	
298	;		
299		DEFINE aext3 BLOCK-VAR BLOCK=R3 SENTENCE=CONV VARIABLE=CONV	&
300 301		ID1=1 DEFINE bext3 BLOCK-VAR BLOCK=R3 SENTENCE=CONV VARIABLE=CONV	_
302		DEFINE bext3 BLOCK-VAR BLOCK=R3 SENTENCE=CONV VARIABLE=CONV ID1=2	&
303		DEFINE cext3 BLOCK-VAR BLOCK=R3 SENTENCE=CONV VARIABLE=CONV	&
304		ID1=3	œ
305		DEFINE dext3 BLOCK-VAR BLOCK=R3 SENTENCE=CONV VARIABLE=CONV	&
306		ID1=4	-
307		DEFINE eext3 BLOCK-VAR BLOCK=R3 SENTENCE=CONV VARIABLE=CONV	&
308		ID1=5	
309		DEFINE fext3 BLOCK-VAR BLOCK=R3 SENTENCE=CONV VARIABLE=CONV	&
310		ID1=6	
311	;		
312	;	DEFINE ac3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF &	
312 313	;	ID1=1 ID2=CISOLID ID3=C	·
312 313 314	;	ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	&
312 313 314 315		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4	
312 313 314		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& &
312 313 314 315 316		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	
312 313 314 315 316 317		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	&
312 313 314 315 316 317 318		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	&
312 313 314 315 316 317 318 319 320 321		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& &
312 313 314 315 316 317 318 319 320 321 322		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& &
312 313 314 315 316 317 318 319 320 321 322 323		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & &
312 313 314 315 316 317 318 319 320 321 322 323 324		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326	;	ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327	;	ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329		ID1=1 ID2=CISOLID ID3=C DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE aco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CO2 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ahhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hhc DEFINE ahhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hhc DEFINE ah2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE ao3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL	& & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE aco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CO2 DEFINE ab23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ahbc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hbc DEFINE ab2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hbc DEFINE ab2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE ao3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE aco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CO2 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ahhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hhc DEFINE ahhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hhc DEFINE ah2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE ao3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4	& & & & & & & & & & & & & & & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE aco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CO2 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ahhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hhc DEFINE ahhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hhc DEFINE ah2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE ao3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE aco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CO2 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hbc DEFINE ah2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE ao3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4	& & & & & & & & & & & & & & & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE acc23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C02 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ahc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hbc DEFINE ahc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hbc DEFINE ahc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE acc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4	& & & & & & & & & & & & & & & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE ac023 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE ac023 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C02 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ahhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hhc DEFINE ah2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE acos BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc463 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH6 DEFINE bc463 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=C2H6 DEFINE bc3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=C2H6 DEFINE bc3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=C2H6	& & & & & & & & & & & & & & & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE acc23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C02 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ahc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hbc DEFINE ahc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hbc DEFINE ahc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE acc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4	& & & & & & & & & & & & & & & & & & &
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339		DEFINE ach43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=CH4 DEFINE ac2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C2H6 DEFINE ac3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE ac023 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C3H8 DEFINE ac023 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=C02 DEFINE ah23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2 DEFINE ahhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=hhc DEFINE ah2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=H2S DEFINE aco3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=1 ID2=MIXED ID3=P-OIL DEFINE bc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=CISOLID ID3=C DEFINE bc443 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=CH4 DEFINE bc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=C2H6 DEFINE bc3h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=C2H6 DEFINE bc3h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=C3H8 DEFINE bc023 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=C3H8 DEFINE bc023 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF ID1=2 ID2=MIXED ID3=C3H8 DEFINE bc023 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF	& & & & & & & & & & & & & & & & & & &

```
343
        DEFINE bhhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
344
            ID1=2 ID2=MIXED ID3=hhc
345
        DEFINE bh2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
            ID1=2 ID2=MIXED ID3=H2S
347
                    BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
348
            ID1=2 ID2=MIXED ID3=P-OIL
349
        DEFINE cc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
350
351
            ID1=3 ID2=CISOLID ID3=C
352
        DEFINE cch43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
                                                                       æ
            ID1=3 ID2=MIXED ID3=CH4
353
354
        DEFINE cc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
355
            ID1=3 ID2=MIXED ID3=C2H6
356
        DEFINE cc3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
357
            ID1=3 ID2=MIXED ID3=C3H8
358
        DEFINE cco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
359
            ID1=3 ID2=MIXED ID3=CO2
360
        DEFINE ch23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
361
            ID1=3 ID2=MIXED ID3=H2
362
        DEFINE chhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
363
            ID1=3 ID2=MIXED ID3=hhc
        DEFINE ch2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
365
            ID1=3 ID2=MIXED ID3=H2S
366
        DEFINE co3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
            ID1=3 ID2=MIXED ID3=P-OIL
367
368
369
        DEFINE dc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
370
            ID1=4 ID2=CISOLID ID3=C
371
        DEFINE dch43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
372
            ID1=4 ID2=MIXED ID3=CH4
373
        DEFINE dc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
374
            ID1=4 ID2=MIXED ID3=C2H6
375
        DEFINE dc3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
376
            ID1=4 ID2=MIXED ID3=C3H8
377
        DEFINE dco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
378
            ID1=4 ID2=MIXED ID3=CO2
379
        DEFINE dh23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
380
            ID1=4 ID2=MIXED ID3=H2
381
        DEFINE dhhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
382
            ID1=4 ID2=MIXED ID3=hhc
383
        DEFINE dh2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
384
            ID1=4 ID2=MIXED ID3=H2S
385
        DEFINE do3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
386
            ID1=4 ID2=MIXED ID3=P-OIL
387
388
        DEFINE ec3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
            ID1=5 ID2=CISOLID ID3=C
389
390
        DEFINE ech43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
391
           ID1=5 ID2=MIXED ID3=CH4
392
        DEFINE ec2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
393
            ID1=5 ID2=MIXED ID3=C2H6
394
        DEFINE ec3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
395
            ID1=5 ID2=MIXED ID3=C3H8
396
        DEFINE eco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
397
            ID1=5 ID2=MIXED ID3=CO2
398
        DEFINE eh23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
399
            ID1=5 ID2=MIXED ID3=H2
400
        DEFINE ehhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
401
            ID1=5 ID2=MIXED ID3=hhc
402
        DEFINE eh2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
403
           ID1=5 ID2=MIXED ID3=H2S
404
        DEFINE eo3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
405
           ID1=5 ID2=MIXED ID3=P-OIL
406 ;
```

```
407
        DEFINE fc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
408
            ID1=6 ID2=CISOLID ID3=C
409
        DEFINE fch43 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
410
            ID1=6 ID2=MIXED ID3=CH4
411
        DEFINE fc2h63 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
412
            ID1=6 ID2=MIXED ID3=C2H6
413
        DEFINE fc3h83 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
                                                                          &
414
            ID1=6 ID2=MIXED ID3=C3H8
415
        DEFINE fco23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
416
            ID1=6 ID2=MIXED ID3=CO2
417
        DEFINE fh23 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
                                                                         ۶
418
            ID1=6 ID2=MIXED ID3=H2
419
        DEFINE fhhc3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
420
            ID1=6 ID2=MIXED ID3=hhc
421
        DEFINE fh2s3 BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
422
            ID1=6 ID2=MIXED ID3=H2S
423
                     BLOCK-VAR BLOCK=R3 SENTENCE=STOIC VARIABLE=COEF
        DEFINE fo3
424
            ID1=6 ID2=MIXED ID3=P-OIL
425
     ; Input Data Below
426
427
428
       Input flows - use kg's for all species
429
           flcr=0.46
     F
           fln2=0.00061
430
     F
431
     F
           flh2o=0.03
432
433
     ; Input basic reaction stoich. wtfc-weight fraction coke
                                      wtfo-weight fraction oil
434
435
                                      fch4, fc2h6 rel moles of noncoke prods
436
    F
           wtfc=0.25
437
           wtfo=0.0
     F
438
     F
           fch4=1.0
439
           fc2h6=0.35
     F
440
     F
           fc3h8=0.21
441
     F
           fco2=0.113
442
     F
           fh2=0.025
    F
          fhhc=0.0
443
444
    F
           fh2s=0.0
445
       Dry N2/O2 + trace free gas composition (For printout only)
446
     ;
447
         1-CO2 2-H2 3-CH4 4-C2H6 5-C3H8 6-Toluene 7-H2S
448
     F
           x(1)=0.069
           x(2)=0.022
449
     F
450
    F
           x(3)=0.703
451
     F
           x(4) = 0.154
     F
           x(5) = 0.053
452
453
     F
           x(6) = 0.017
           x(7)=0.013
    F
454
455
        Coke (kg) printout only
456
457
     F
           coke=0.0315
458
       Input extent. er-fraction of input reacted
459
                       fer1-fraction of er in reactor 1, etc
460
461
     F
           er=0.176
462
    F
           fer1=0.112
           fer2=0.563
     F
463
464
     ;
       Input temperatures (C) and pressures (Bar)
465
     :
466
     F
           t1c=426
467
     F
           p1=151
468
           t2c=429
469
470
     F
           p2=194
```

```
471
472
    F
          t3c=48
          p3=29
473
    F
474
475
       final blow down on opening density not set
476 F
          t4c=25
477
    F
          p4=1
478
479
    ; Input density, vol is reactor volume in Liters
480
       (assumes input flow is charge in kg/s)
481 F
          vol=1.05
482
    į
483
       Read dat from input file
484 F
          write(ntrmnl,'(/''Data file name ? '')')
          read (ntrmnl, '(a)') file
485 F
486
    F
          open(222, file=file, err=900, iostat=ier, status='OLD')
       use scratch file to remove comment lines (lines beginning
487
    C
488
    С
       with *)
          open(221, file='scratch', status='UNKNOWN', iostat=ier, err=900)
489
    F
    F 100 read (222, '(a)', err=900, iostat=ier,end=800) line
490
          if (line(1:1) .ne. '*')
491
    F
             write (221, '(a)', err=900, iostat=ier) line
492 F
493 F
          goto 100
494
495 F 800 endfile (221)
496 F
          rewind(221)
497
    F
          read (221, nml=indata, err=900, iostat=ier)
498
    F
          close(221)
          close (222)
499 F
          goto 500
500 F
501
write(ntrmnl,'(/''Error occurred in namelist input. ier='',
503 F
504
   F
                i6)') ier
505
    F
          if (ier.eq.979)
         & write(ntrmnl,'(/'' 979: Variable name not found.'')')
506
    F
          507
    F
508
    ;F
509 F 500 continue
510
511
       convert flows (from kg/s) to lb/hr
512
513 F
          fln2x=fln2/0.454*3600.0
          flh2ox=flh2o/0.454*3600.0
514 F
515
    F
          flcrx=flcr/0.454*3600.0
516
    ;
517
       convert T's to F
518 F
          t1=1.8*t1c+32
          t2=1.8*t2c+32
519
   F
520
   F
          t3=1.8*t3c+32
   F
          t4=1.8*t4c+32
521
522
       convert to reaction extents
523
                    ern-fractions of total reaction occuring in rn
524
    ;
525
    F
          er1=fer1*er
526
    F
          er2=fer2*er
          er3=er
527
    F
528
529
       stor P's in common
530
          px1=p1
    F
    F
          px2=p2
531
          px3=p3
532
    F
533 F
          px4=p4
534
```

```
535
         define gas mw's for later use
536
     F
            wch4=16.0428
537
     F
            wc2h6=30.0696
538
    F
            wc3h8=44.0965
539
     F
            wco2 = 44.0098
540
     F
            wh2 = 2.01588
541
            wh2s = 34.0819
     F
542
     F
            WC
                =12.0110
543
        butane
           whhc= 58.1234
544
     F
545
     ;
        P-OIL
546
          (1. Pentane 2. Octane)
     ;
547
     ;F
             wo= 72.8688
548
           wo = 109.04
     F
549
550
        normalize gas
551
     F
            sum=fch4+fc2h6+fc3h8+fco2+fh2+fhhc+fh2s
552
     F
            fch4=fch4/sum
553
     F
            fc2h6=fc2h6/sum
554
     F
            fc3h8=fc3h8/sum
555
     F
            fco2=fco2/sum
556
    F
            fh2=fh2/sum
     F
            fhhc=fhhc/sum
557
558
     F
            fh2s=fh2s/sum
559
     ; Compute density from flow (flow from ASPEN in lbs/hr)
560
561
        Now computed in FORTRAN INIT
562
563
        compute gas average mw
           wmix=fch4*wch4+fc2h6*wc2h6+fc3h8*wc3h8+fco2*wco2+fh2*wh2
564
    F
565
     F
                +fhhc*whhc+fh2s*wh2s
566
     ;
567
        compute extents
568
     F
           aext1=er1
     F
           aext2=er2
569
570
     F
           aext3=er3
571
     F
           bext1=aext1
572
     F
           bext2=aext2
573
     F
           bext3=aext3
574
     F
           cext1=aext1
575
     F
           cext2=aext2
576
     F
           cext3=aext3
577
     F
           dext1=aext1
578
     F
           dext2=aext2
579
     F
           dext3=aext3
580
     F
           eext1=aext1
581
     F
           eext2=aext2
582
     F
           eext3=aext3
583
     F
           fext1=aext1
584
     F
           fext2=aext2
585
     F
           fext3=aext3
586
587
        For VR reaction
588
           wm=540.2436
     F
589
     F
           wtc=wm*wtfc
590
     F
           wto=wm*wtfo
591
     F
           wtg=wm-wtc-wto
592
     F
           xmolg=wtg/wmix
593
     F
           ac1=wtc/wc
594
     F
           ao1=wto/wo
     F
           ach41 =xmolg*fch4
595
596
     F
           ac2h61=xmolg*fc2h6
597
     F
           ac3h81=xmolg*fc3h8
598
     F
           aco21 =xmolg*fco2
```

```
599
     F
            ah21 =xmolg*fh2
600
     F
            ahhc1=xmolg*fhhc
601
     F
            ah2s1 =xmolg*fh2s
602
     F
            ac2=ac1
603
     F
            ao2=ao1
            ach42 =ach41
604
     F
605
     F
            ac2h62=ac2h61
     F
            ac3h82=ac3h81
606
607
     F
            aco22 = aco21
608
     F
            ah22 =ah21
            ahhc2=ahhc1
609
     F
610
     F
            ah2s2 = ah2s1
611
     F
           ac3=ac1
612
     F
            ao3=ao1
     F
            ach43 =ach41
613
614
            ac2h63=ac2h61
     F
            ac3h83=ac3h81
615
     F
616
     F
           aco23 = aco21
617
     F
            ah23 =ah21
            ahhc3=ahhc1
618
     F
619
     F
           ah2s3 = ah2s1
620
621
        For HVGO reaction
           wm=410.7407
622
     F
623
     F
           wtc=wm*wtfc
624
     F
           wto=wm*wtfo
625
     F
           wtg=wm-wtc-wto
626
     F
           xmolg=wtg/wmix
627
     F
           bc1=wtc/wc
628
     F
           bo1=wto/wo
629
     F
           bch41 =xmolg*fch4
630
           bc2h61=xmolg*fc2h6
     F
631
    F
           bc3h81=xmolg*fc3h8
632
     F
           bco21 =xmolg*fco2
633
     F
           bh21 =xmolg*fh2
634
     F
           bhhc1=xmolg*fhhc
635
           bh2s1 =xmolq*fh2s
     F
636
     F
           bc2=bc1
           bo2=bo1
637
     F
           bch42 =bch41
638
     F
639
     F
           bc2h62=bc2h61
           bc3h82=bc3h81
640
     F
641
     F
           bco22 = bco21
642
     F
           bh22 =bh21
643
     F
           bhhc2=bhhc1
644
     F
           bh2s2 = bh2s1
645
     F
           bc3=bc1
646
     F
           bo3=bo1
647
           bch43 =bch41
     F
           bc2h63=bc2h61
648
     F
           bc3h83=bc3h81
649
     F
650
     F
           bco23 =bco21
651
     F
           bh23 =bh21
           bhhc3=bhhc1
652
     F
     F
           bh2s3 = bh2s1
653
654
655
        For LVGO reaction
           wm=306.6466
656
     F
           wtc=wm*wtfc
657
     F
           wto=wm*wtfo
658
     F
659
     F
           wtg=wm-wtc-wto
660
     F
            xmolg=wtg/wmix
     F
            cc1=wtc/wc
661
    F
            co1=wto/wo
662
```

```
663
            cch41 =xmolg*fch4
664
     F
            cc2h61=xmolg*fc2h6
     F
665
            cc3h81=xmolg*fc3h8
666
     F
            cco21 =xmolg*fco2
667
     F
            ch21 =xmolg*fh2
     F
            chhcl=xmolg*fhhc
668
     F
            ch2s1 =xmolg*fh2s
669
670
     F
            cc2=cc1
     F
671
            co2=co1
672
     F
            cch42 = cch41
673
     F
            cc2h62=cc2h61
674
     F
            cc3h82=cc3h81
675
     F
            cco22 =cco21
676
     F
            ch22 =ch21
677
     F
            chhc2=chhc1
678
     F
            ch2s2 = ch2s1
679
     F
            cc3=cc1
680
     F
            co3=co1
681
     F
            cch43 =cch41
682
     F
            cc2h63=cc2h61
683
     F
            cc3h83=cc3h81
684
            cco23 =cco21
     F
685
     F
            ch23 =ch21
686
     F
            chhc3=chhc1
687
     F
            ch2s3 = ch2s1
688
689
        For AGO reaction
690
     F
           wm=228.1870
     F
691
            wtc=wm*wtfc
           wto=wm*wtfo
692
     F
693
     F
           wtg=wm-wtc-wto
694
     F
            xmolg=wtg/wmix
     F
695
            dc1=wtc/wc
696
    F
            dol=wto/wo
697
     F
            dch41 =xmolg*fch4
698
     F
            dc2h61=xmolg*fc2h6
699
     F
            dc3h81=xmolg*fc3h8
700
     F
            dco21 =xmolg*fco2
701
    F
            dh21 =xmolg*fh2
702
    F
            dhhc1=xmolg*fhhc
703
     F
            dh2s1 =xmolg*fh2s
     F
            dc2=dc1
704
705
     F
            do2=do1
706
     F
            dch42 =dch41
707
     F
            dc2h62=dc2h61
708
     F
            dc3h82=dc3h81
709
     F
            dco22 =dco21
710
     F
            dh22 = dh21
711
     F
            dhhc2=dhhc1
     F
            dh2s2 = dh2s1
712
713
     F
            dc3=dc1
     F
            do3=do1
714
715
     F
            dch43 =dch41
716
     F
            dc2h63=dc2h61
            dc3h83=dc3h81
717
     F
718
     F
            dco23 =dco21
719
     F
            dh23 =dh21
720
     F
            dhhc3=dhhc1
721
     F
            dh2s3 = dh2s1
722
     ;
723
        For KERO reaction
724
            wm=178.2905
     F
725
     F
            wtc=wm*wtfc
726
            wto=wm*wtfo
```

```
727
     F
            wtg=wm-wtc-wto
728
            xmolg=wtg/wmix
     F
729
     F
            ec1=wtc/wc
730
     F
            eo1=wto/wo
            ech41 =xmolg*fch4
731
     F
732
     F
            ec2h61=xmolg*fc2h6
733
     F
            ec3h81=xmolg*fc3h8
734
     F
            eco21 =xmolg*fco2
            eh21 =xmolg*fh2
735
     F
736
            ehhc1=xmolg*fhhc
     F
737
     F
            eh2s1 =xmolg*fh2s
738
     F
            ec2=ec1
739
     F
            eo2=eo1
            ech42 =ech41
740
     F
741
     F
            ec2h62=ec2h61
            ec3h82=ec3h81
742
     F
743
     F
            eco22 =eco21
            eh22 =eh21
744
     F
            ehhc2=ehhc1
745
     F
            eh2s2 = eh2s1
746
     F
747
     F
            ec3=ec1
748
     F
            eo3=eo1
            ech43 =ech41
749
     F
750
     F
            ec2h63=ec2h61
            ec3h83=ec3h81
751
     F
752
            eco23 = eco21
     F
            eh23 =eh21
753
     F
            ehhc3=ehhc1
754
     F
            eh2s3 = eh2s1
755
     F
756
757
        For HNAPH reaction
           wm=141.7508
758
     F
759
     F
            wtc=wm*wtfc
760
     F
            wto=wm*wtfo
761
     F
           wtg=wm-wtc-wto
762
     F
            xmolg=wtg/wmix
763
     F
            fc1=wtc/wc
            fol=wto/wo
764
     F
765
     F
            fch41 =xmolg*fch4
            fc2h61=xmolg*fc2h6
766
     F
767
     F
            fc3h81=xmolg*fc3h8
            fco21 =xmolg*fco2
768
     F
769
     F
            fh21 =xmolg*fh2
            fhhc1=xmolg*fhhc
770
     F
771
     F
            fh2s1 =xmolg*fh2s
772
     F
            fc2=fc1
773
     F
            fo2=fo1
774
            fch42 =fch41
     F
775
            fc2h62=fc2h61
     F
            fc3h82=fc3h81
776
     F
777
     F
            fco22 =fco21
            fh22 = fh21
778
     F
            fhhc2=fhhc1
779
     F
780
     F
            fh2s2 = fh2s1
            fc3=fc1
781
     F
782
     F
            fo3=fo1
783
            fch43 =fch41
     F
            fc2h63=fc2h61
784
     F
            fc3h83=fc3h81
785
     F
786
     F
            fco23 = fco21
            fh23 =fh21
787
     F
            fhhc3=fhhc1
788
     F
789
     F
            fh2s3 = fh2s1
```

790

```
791
       EXECUTE FIRST
792
793 FORTRAN INIT
794 F
         common/usr1/ dens,px1,px2,px3,px4,x(9),vol,t1c,t2c,t3c,t4c,coke
795
      DEFINE flow STREAM-VAR STREAM-FEED VARIABLE-MASS-FLOW
796 ;
797
   ; Compute density from flow (flow from ASPEN in lbs/hr)
         dens=flow/3600*0.454/vol*1e3
798 F
         write(nrpt,'(''dens='',f8.1)') dens
799
800
       EXECUTE AFTER MIXF
801
802
803
    804
    ; Control input
805
    806
807
    ACCOUNT-INFO ACCOUNT=HPASPEN PROJECT-ID=P &
808
           PROJECT-NAME="Oil Upgrading" USER-NAME="CHE"
809
    IN-UNITS ENG VOLUME-FLOW='BBL/DAY' ENTHALPY-FLO='MMBTU/HR' &
810
           PRESSURE='BAR' VOLUME=BBL HEAD=FT HEAT=MMBTU
811
812
    STREAM-REPORT MOLEFRAC PROPERTIES=TOTAL PETRO
813
814
815
    PROPERTY-REPORT PROJECT
816
817
    OUT-UNITS SI TEMPERATURE=C
818
819
   PROP-SET TOTAL TBUB PBUB
820
821 PROP-SET PETRO VLSTDMX APISTD SGSTD WAT &
822
          UNITS='BBL/DAY' 'BBL/HR' SUBSTREAM=MIXED
823
          BASIS=DRY
824
   825
826
   ; Component & Property Setup
    827
828
829
    SIM-OPTIONS FREE-WATER=YES
830
    :SIM-OPTIONS FREE-WATER=NO
831
832 ; Insert API method for liquid volumes in all possible option sets
833 INSERT * API
834
835
   ; GRAYSON perferred
   ; PROPERTIES PRMHV2 SOLU-WATER=0 ; (see vp_ow.inp)
836
               PSRK SOLU-WATER=0 ; (see vp_ow.inp)
    ; PROPERTIES
837
838
               LK-PLOCK SOLU-WATER=0 ; (see vp_ow.inp)
    ; PROPERTIES
               CHAO-SEA SOLU-WATER=1 /
839
    ; PROPERTIES
              PRMHV2 ONE TWO SOLU-WATER=1
840
    PROPERTIES GRAYSON SOLU-WATER=1
841
842
    ; PROPERTIES
               CHAO-SEA SOLU-WATER=1
843
844 DATABANKS PURECOMP / AQUEOUS / SOLIDS / INORGANIC / &
             NOASPENPCD
845
846
    PROP-SOURCES PURECOMP / AQUEOUS / SOLIDS / INORGANIC
847
848
849
   ; To use different HHC change here & change hardwired mw in FOTRAN BLOCK
850
851
    : SETI at statement whhc=??.
   COMPONENTS
852
       H2O H2O H2O / H2S H2S H2S
853
      / N2 N2 N2 / CH4 CH4 CH4 / CO2 CO2 CO2 / H2 H2 H2
854
```

```
855
        / C2H6 C2H6 C2H6 / C3H8 C3H8 C3H8 / HHC C4H10-1 C4H10-1
856
        / P-OIL / C C C
857
858
     PC-USER
859
          PC-DEF ASPEN P-LE
                                        0 API=60
                                 NBP=
860
          PC-DEF ASPEN
                        P-LGASO NBP= 125
                                           API=55
861
                        P-LNAPH NBP= 250
          PC-DEF ASPEN
                                           API=50
     ;
862
          PC-DEF ASPEN
                        P-HNAPH NBP= 350
                                           API=45
863
                        P-KERO NBP= 450
          PC-DEF ASPEN
                                           API=35
864
          PC-DEF ASPEN
                        P-AGO
                                 NBP= 575
                                           API=30
                                NBP= 725
865
          PC-DEF ASPEN
                        P-LVGO
                                           API=25
     į
866
          PC-DEF ASPEN
                        P-HVGO
                                NBP= 900
                                           API=20
867
                                 NBP=1200
          PC-DEF ASPEN
                        P-VR
                                           API=10
868
          PC-DEF ASPEN
                                NBP= 250
                        P-OIL
                                           API=50
869
870
     PROP-DATA
871
           PROP-LIST
                               WATSOL
                                          \cdot; exp(c1+c2/T+c3*T)
872
                                 Ci1
                                              Ci2
                                                              Ci3
873
        set low MW to zero
874
            PVAL C2H6
                                 -10
                                              0.0
                                                              0
875
             PVAL C3H8
                                 -10
                                              0.0
876
             PVAL hhc
                                 -10
                                              0.0
                                                              0
                  P-OIL
877
             PVAL
                                -10
                                              0.0
                                                              n
                                            -4352.68
878
             PVAL HNAPH
                              7.35939
                                                              0
879
             PVAL
                  KERO
                              7.24358
                                            -4328.52
                                                              0
     ;
880
             PVAL
                   AGO
                              7.12479
                                            -4303.77
                                                              0
     ;
881
             PVAL
                   LVGO
                              6.98712
                                            -4275.15
                                                              0
     ;
                                            -4247.13
882
             PVAL
                   HVGO
                              6.85205
                                                              0
                              6.72077
                                            -4219.96
                                                              0
883
             PVAL
                   VR
884
885
        Gives sommething like linear
                                         c1=ln(MW/142)
                                                          0.00323
886
             PVAL HNAPH
                                0
                                            -1580
     ;
                                                          0.00323
887
            PVAL
                  KERO
                                0.226
                                            -1580
888
             PVAL
                  AGO
                                0.474
                                            -1580
                                                          0.00323
     ;
                                0.771
                                            -1580
                                                          0.00323
889
             PVAL
                  LVGO
     ;
890
             PVAL
                   HVGO
                                1.063
                                            -1580
                                                          0.00323
     ;
                                            -1580
                                                          0.00323
891
            PVAL
                   VR
                                1.336
892
893
        Gives up/down
                         (New)
            PVAL HNAPH
                                24.35
                                            -8000
                                                         -0.019
894
895
             PVAL KERO
                                24.35
                                            -8000
                                                         -0.019
                                            -8000
                                                         -0.019
896
             PVAL AGO
                                24.35
                                            -8000
                                                         -0.019
             PVAL
                  LVGO
                                24.35
897
                                            -8000
                                                         -0.019
898
             PVAL
                  HVGO
                                24.35
899
             PVAL
                   VR
                                24.35
                                            -8000
                                                         -0.019
900
901
902
         Set to specifc weigth percent
                                            -275
                                                             0
903
            PVAL HNAPH
                                 0
     į
904
             PVAL KERO
                                  0
                                            -275
                                                             0
     ;
905
             PVAL
                  AGO
                                 0
                                            -275
                                                             0
     į
                                  0
                                            -275
                                                             0
906
             PVAL
                  LVGO
907
             PVAL
                  HVGO
                                  0
                                            -275
                                                             0
     ;
908
             PVAL
                   VR
                                  0
                                            -275
                                                             0
909
                                                              0
910
            PVAL
                                 -1.1
                                              0
                  HNAPH
911
             PVAL
                  KERO
                                 -1.1
                                              0
                                                              0
912
             PVAL
                  AGO
                                 -1.1
                                              0
                                                              0
913
                  LVGO
                                 -1.1
                                              0
                                                              0
             PVAL
     ;
914
             PVAL
                   HVGO
                                 -1.1
                                              0
                                                              0
     ;
                                 -1.1
                                              0
                                                              0
915
             PVAL
                   VR
916
917
     PC-CALC
918
         PC-SET CRUDE
```

1

```
919
        PC-IDS OPTION=LIST &
920
              LIST=LE LGASO LNAPH HNAPH KERO AGO LVGO HVGO
921
         CUTS LIST= 0 60 175 300 400 500 650 800 1000
                                                                1600
922
923 ADA-SETUP
        ADA-SETUP PROCEDURE=REL9
924
925
                   ; made up
926
    ASSAY CUT1
927
        ASSAY-DATA API=37.1
928
         DIST-CURVE D86 0 360 / 20 365 / 80 370 / 100 375
929
930
    ASSAY CUT2
        ASSAY-DATA API=29.9
931
932
        DIST-CURVE D86 0 430
933
                      / 5 446 / 10 450 / 20 456 / 30 462 &
                      / 40 466 / 50 470 / 60 476 / 70 482 &
934
                      /80 490 / 90 504 / 95 508 / 99 514
935
936
937
    ASSAY CUT3
        ASSAY-DATA API=23.7
938
        DIST-CURVE D86 0 520
939
                      / 5 544 / 10 558 / 20 562 / 30
940
941
                      / 40 570 / 50 574 / 60 580 / 70
                      / 80 590 / 90 600 / 95 610 / 99 618
942
943
944
    ASSAY CUT4
                   ; Vac
      ASSAY-DATA API=16.0
945
946
        DIST-CURVE TBPLV 0 637
                      / 5 664 / 10 683 / 20 688 / 30
947
                                                        698 &
                      / 40 708 / 50 718 / 60 737 / 70
948
                                                        755 &
                      / 80 778 / 90 806 / 95 827 / 99 844
949
950
   ASSAY CUT5
951
                ; Vac
952
        ASSAY-DATA API=13.8
        DIST-CURVE TBPLV 0 686
953
954
                      / 5 734 / 10 760 / 20 797 / 30 816 &
955
                      / 40 834 / 50 851 / 60 868 / 70
                                                        887 &
                      / 80 908 / 90 938 / 95 952 / 99 973
956
957
958. ASSAY CUT6
                  ; Vac
        ASSAY-DATA API=4.6
959
        DIST-CURVE TBPLV 0 917
960
                     / 5 938 / 10 979 / 20 998
962
                    / 40 1045 / 60 1085 / 80 1130 / 90 1165
                     ; Above 20% from log probability curve
963
964
965 BLEND CRUDE
    ; core labs crude API 11.5
966
        MASS-FRAC CUT1 0.0087 / CUT2 0.0536 / CUT3 0.108 / &
967
                CUT4 0.1479 / CUT5 0.2194 / CUT6 0.4608
968
    ; add lights to get API of 13.5
969
970
        MASS-FRAC CUT1 0.0496 / CUT2 0.0764 / CUT3 0.1007 / &
                 CUT4 0.1378 / CUT5 0.2045 / CUT6 0.4295
971
972
973
974
975
     ; Flowsheet
976
977
978 FLOWSHEET ONE
979
     ; Mix feeds and create 3 separate & equal streams
        BLOCK MIXF IN=FEEDO FEEDW OUT=FEED
980
        BLOCK DUP IN=FEED
                                     OUT=1FEED 2FEED 3FEED
981
982
```

```
983
     ; To start const T period
 984
         BLOCK R1
                   IN=1FEED
                                    OUT=1ROUT
         BLOCK HTR1 IN=1ROUT
 985
                                    OUT=1HTR
986
         BLOCK SPLT1 IN=1HTR
                                    OUT=1GAS 1LIQ 1WAT
987
 988 FLOWSHEET TWO
 989
     ; At end constant T period
990
         BLOCK HTR2A IN=2FEED
                                    OUT=2AHTR
991
         BLOCK R2 IN=2AHTR
                                    OUT=2ROUT
 992
         BLOCK HTR2 IN=2ROUT
                                    OUT=2HTR
 993
         BLOCK SPLT2 IN=2HTR
                                    OUT=2GAS 2LIQ 2WAT
994
     FLOWSHEET THREE
995
996
     ; At end
         BLOCK HTR3A IN=3FEED
                                    OUT=3AHTR
997
998
         BLOCK R3 IN=3AHTR
                                    OUT=3ROUT
999
         BLOCK HTR3 IN=3ROUT
                                    OUT=3HTR
                                    OUT=3GAS 3LIQ 3WAT
1000
         BLOCK SPLT3 IN=3HTR
1001
1002
    FLOWSHEET FOUR
1003
     ; After opening
         BLOCK HTR4 IN=3GAS 3LIQ 3WAT OUT=4HTR
1004
1005
         BLOCK SPLT4 IN=4HTR
                                    OUT=4GAS 4LIQ 4WAT
1006
1007
     1008
     1009
1010
     DEF-STREAMS MIXCISLD ALL
1011
1012
1013
1014
     STREAM FEEDO ; Contains crude only
         SUBSTREAM MIXED TEMP=25<C> PRES=100<bar>
1015
         MASS-FLOW CRUDE 0.46<kg/sec>
1016
1017
     STREAM FEEDW ; Contains water & other noncrude components
1018
         SUBSTREAM MIXED TEMP=25<C> PRES=100<bar>
1019
         MASS-FLOW H2O 0.03<kg/sec> / N2 0.00061<kg/sec>
1020
1021
1022
1023
     ; Block specifications
     1024
1025
1026 BLOCK MIXF MIXER
1027 BLOCK DUP DUPL
1028
1029
     BLOCK R1 RSTOIC
                         -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1030
         STOIC 1 MIXED VR
                               C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1031
1032
                             CISOLID C *
               1 MIXED VR 1
1033
         STOIC 2 MIXED HVGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1034
                               C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1035
1036
                             CISOLID C *
         CONV 2 MIXED HVGO 1
1037
         STOIC 3 MIXED LVGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / & C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1038
1039
1040
                             CISOLID C *
1041
         CONV 3 MIXED LVGO 1
         STOIC 4 MIXED AGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1042
                               C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1043
                             CISOLID C *
1044
1045
         CONV 4 MIXED AGO 1
         STOIC 5 MIXED KERO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1046
```

```
1047
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1048
                                CISOLID C *
1049
                 5 MIXED KERO 1
          CONV
1050
          STOIC 6 MIXED HNAPH -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1051
1052
                                CISOLID C *
1053
          CONV
                 6 MIXED HNAPH 1
1054
      BLOCK SPLT1 FLASH2
1055
          PARAM DUTY=0
1056
1057
      BLOCK R2 RSTOIC
1058
          STOIC 1 MIXED VR
                             -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1059
1060
                                CISOLID C *
1061
          CONV
                 1 MIXED VR 1
1062
          STOIC 2 MIXED HVGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1063
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1064
                                CISOLID C *
1065
          CONV
                 2 MIXED HVGO 1
1066
          STOIC 3 MIXED LVGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1067
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1068
                                CISOLID C *
1069
          COM
                 3 MIXED LVGO 1
1070
          STOIC 4 MIXED AGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1071
                                CISOLID C *
1072
1073
          CONV
                 4 MIXED AGO 1
1074
          STOIC 5 MIXED KERO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1075
1076
                                CISOLID C *
1077
          CONV
                 5 MIXED KERO 1
1078
          STOIC 6 MIXED HNAPH -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1079
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1080
                                CISOLID C *
1081
                 6 MIXED HNAPH 1
          CONV
1082
     BLOCK SPLT2 FLASH2
1083
1084
1085
      BLOCK R3 RSTOIC
1086
          STOIC 1 MIXED VR
                             -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1087
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1088
                                CISOLID C *
1089
          CONV
                 1 MIXED VR 1
1090
          STOIC 2 MIXED HVGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1091
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1092
                                CISOLID C *
1093
          CONV
                 2 MIXED HVGO 1
1094
          STOIC 3 MIXED LVGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1095
1096
                                CISOLID C *
1097
          CONV
                 3 MIXED LVGO 1
1098
          STOIC 4 MIXED AGO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1099
1100
                                CISOLID C *
1101
          CONV
                 4 MIXED AGO 1
          STOIC 5 MIXED KERO -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1102
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1103
1104
                                CISOLID C *
1105
          CONV
                 5 MIXED KERO 1
          STOIC 6 MIXED HNAPH -1 / C2H6 * / C3H8 * / CH4 * / C2H6 * / &
1106
1107
                                  C3H8 * / CO2 * / H2 * /hhc * / H2S * / &
1108
                                CISOLID C *
1109
          CONV
                 6 MIXED HNAPH 1
      BLOCK SPLT3 FLASH2
1110
```

```
1111
1112
1113
      BLOCK HTR1 HEATER
1114
          DESCRIPTION 'Sets desired flash temperature & pressure'
1115
          PARAM TEMP=25 <C> PRES=100<bar>
1116
      BLOCK HTR2 HEATER
1117
          DESCRIPTION 'Sets desired flash temperature & pressure'
1118
          PARAM TEMP=25 <C> PRES=100<bar>
1119
     BLOCK HTR3 HEATER
1120
          DESCRIPTION 'Sets desired flash temperature & pressure'
1121
          PARAM TEMP=25 <C> PRES=100<bar>
1122
     BLOCK HTR2A HEATER
          DESCRIPTION 'Sets desired flash temperature & pressure'
1123
1124
          PARAM TEMP=25 <C> PRES=100<bar>
1125
      BLOCK HTR3A HEATER
          DESCRIPTION 'Sets desired flash temperature & pressure'
1126
1127
          PARAM TEMP=25 <C> PRES=100<bar>
1128
1129
     ; blow down
1130 BLOCK HTR4 HEATER
          DESCRIPTION 'Sets desired flash temperature & pressure no density it'
1131
          PARAM TEMP=25 <C> PRES=100<bar>
1132
1133
     BLOCK SPLT4 FLASH2
1134
1135
1136
1137
1138
     ; Design Specs
1139
     1140
1141
     PROP-SET DEN RHOMX UNITS='KG/CUM'
1142 PROP-SET DENM RHOMX UNITS='KMOL/CUM'
1143 PROP-SET API APISTD BASIS=DRY
1144
1145 DESIGN-SPEC DEN1
1146 F
            common/usr1/ dens,px1,px2,px3,px4,x(9),vol,t1c,t2c,t3c,t4c,coke
         DEFINE DEN1 STREAM-PROP STREAM=1HTR PROPERTY=DEN
1147
1148
         DEFINE char1 MASS-FLOW STREAM=1HTR SUBSTREAM=CISOLID COMPONENT=C
1149
        convert char from lb/hr to kg/s
1150 F
           ckg1=char1*0.454/3600
1151
        compute corrected density
1152 F
           dc1=dens-ckg1/vol*1.0e3
1153
         SPEC DEN1 TO 'dc1'
1154
         TOL-SPEC 1
1155
        VARY BLOCK-VAR BLOCK=HTR1 SENTENCE=PARAM VARIABLE=PRES
1156
        LIMITS 10 250
1157
1158 DESIGN-SPEC DEN2
1159
            common/usr1/ dens,px1,px2,px3,px4,x(9),vol,tlc,t2c,t3c,t4c,coke
1160
        DEFINE DEN2 STREAM-PROP STREAM=2HTR PROPERTY=DEN
1161
        DEFINE char2 MASS-FLOW STREAM=2HTR SUBSTREAM=CISOLID COMPONENT=C
1162
       convert char from lb/hr to kg/s
1163
            ckg2=char2*0.454/3600
1164
         compute corrected density
1165
           dc2=dens-ckg2/vol*1.0e3
         SPEC DEN2 TO 'dc2'
1166
1167
         TOL-SPEC 1
         VARY BLOCK-VAR BLOCK=HTR2 SENTENCE=PARAM VARIABLE=PRES
1168
1169
        LIMITS 50
1170
1171 DESIGN-SPEC DEN3
1172 F
            common/usr1/ dens,px1,px2,px3,px4,x(9),vol,t1c,t2c,t3c,t4c,coke
1173
         DEFINE DEN3 STREAM-PROP STREAM-3HTR PROPERTY=DEN
1174
         DEFINE char3 MASS-FLOW STREAM=3HTR SUBSTREAM=CISOLID COMPONENT=C
```

```
1175 :
        convert char from lb/hr to kg/s
 1176
            ckg3=char3*0.454/3600
 1177
          compute corrected density
 1178
      F
            dc3=dens-ckg3/vol*1.0e3
 1179
          SPEC DEN3 TO 'dc3'
 1180
          TOL-SPEC 1
 1181
          VARY BLOCK-VAR BLOCK=HTR3 SENTENCE=PARAM VARIABLE=PRES
 1182
         LIMITS 1
                     50
 1183
 1184
      ; SENSITIVITY S1
 1185
      ; DEFINE DEN1 STREAM-PROP STREAM=1HTR PROPERTY=DEN
 1186
         TABULATE 1 DEN1
 1187
         VARY BLOCK-VAR BLOCK=HTR1 SENTENCE=PARAM VARIABLE=PRES
 1188
         RANGE LOWER=100 UPPER=200 INCR=10
 1189
 1190
 1191
      1192
      : Output
 1193
       1194
1195
      FORTRAN OUT
1196
            common/usr1/ dens,px1,px2,px3,px4,x(9),vol,t1c,t2c,t3c,t4c,coke
         DEFINE deng1 STREAM-PROP STREAM=1GAS PROPERTY=DENM
 1197
 1198
         DEFINE deng2 STREAM-PROP STREAM=2GAS PROPERTY=DENM
1199
         DEFINE deng3 STREAM-PROP STREAM=3GAS PROPERTY=DENM
1200
         DEFINE ppl STREAM-VAR STREAM=1GAS VARIABLE=PRES
1201
         DEFINE pp2
                      STREAM-VAR STREAM=2GAS VARIABLE=PRES
 1202
         DEFINE pp3
                      STREAM-VAR STREAM=3GAS VARIABLE=PRES
1203
         DEFINE chr1 MASS-FLOW STREAM=1HTR SUBSTREAM=CISOLID COMPONENT=C
1204
         DEFINE chr2 MASS-FLOW STREAM=2HTR SUBSTREAM=CISOLID
                                                             COMPONENT=C
1205
         DEFINE chr3 MASS-FLOW STREAM=3HTR SUBSTREAM=CISOLID
                                                             COMPONENT=C
1206
         DEFINE w1
                      MASS-FLOW STREAM=1LIO SUBSTREAM=MIXED
                                                             COMPONENT=H2O
1207
         DEFINE w2
                      MASS-FLOW STREAM=2LIQ SUBSTREAM=MIXED
                                                             COMPONENT=H20
1208
         DEFINE w3
                     MASS-FLOW STREAM=3LIQ SUBSTREAM=MIXED
                                                             COMPONENT=H20
         DEFINE wfl MASS-FLOW STREAM=1WAT SUBSTREAM=MIXED
1209
                                                             COMPONENT=H20
1210
         DEFINE wf2 MASS-FLOW STREAM=2WAT SUBSTREAM=MIXED
                                                             COMPONENT=H20
1211
         DEFINE wf3 MASS-FLOW STREAM=3WAT SUBSTREAM=MIXED
                                                             COMPONENT=H20
1212
         DEFINE wtt MASS-FLOW STREAM=3HTR SUBSTREAM=MIXED
                                                             COMPONENT=H2O
         DEFINE ft1 STREAM-VAR STREAM=1LIQ VARIABLE=MASS-FLOW
1213
1214
         DEFINE ft2
                      STREAM-VAR STREAM=2LIQ VARIABLE=MASS-FLOW
1215
         DEFINE ft3
                      STREAM-VAR STREAM=3LIQ VARIABLE=MASS-FLOW
1216
         DEFINE pc1
                      STREAM-VAR STREAM=1GAS
                                            VARIABLE=PRES
1217
                      STREAM-VAR STREAM=2GAS VARIABLE=PRES
         DEFINE pc2
1218
                      STREAM-VAR STREAM=3GAS VARIABLE=PRES
         DEFINE pc3
1219
         DEFINE d1 STREAM-PROP STREAM=1HTR PROPERTY=DEN
1220
         DEFINE d2 STREAM-PROP STREAM-2HTR PROPERTY=DEN
1221
         DEFINE d3 STREAM-PROP STREAM-3HTR PROPERTY=DEN
1222
         DEFINE fch4 MOLE-FLOW STREAM=3GAS COMPONENT=CH4
1223
         DEFINE fc2h6 MOLE-FLOW STREAM=3GAS COMPONENT=C2H6
1224
         DEFINE fc3h8 MOLE-FLOW STREAM=3GAS
                                           COMPONENT=C3H8
1225
         DEFINE fco2 MOLE-FLOW STREAM=3GAS COMPONENT=CO2
         DEFINE fh2 MOLE-FLOW STREAM=3GAS COMPONENT=H2
1226
1227
         DEFINE fhhc MOLE-FLOW STREAM=3GAS COMPONENT=hhc
         DEFINE fh2s MOLE-FLOW STREAM=3GAS COMPONENT=H2S
1228
1229
         DEFINE fpoil MOLE-FLOW STREAM=3GAS COMPONENT=P-OIL
1230
         DEFINE tch4 MOLE-FLOW STREAM=3HTR COMPONENT=CH4
1231
         DEFINE tc2h6 MOLE-FLOW STREAM=3HTR COMPONENT=C2H6
1232
         DEFINE tc3h8 MOLE-FLOW STREAM=3HTR COMPONENT=C3H8
1233
         DEFINE tco2 MOLE-FLOW STREAM=3HTR COMPONENT=CO2
1234
         DEFINE th2 MOLE-FLOW STREAM=3HTR COMPONENT=H2
1235
        . DEFINE thhc MOLE-FLOW STREAM=3HTR COMPONENT=hhc
         DEFINE th2s MOLE-FLOW STREAM=3HTR COMPONENT=H2S
1236
1237
         DEFINE tpoil MOLE-FLOW STREAM=3HTR COMPONENT=P-OIL
1238
         DEFINE th2o MOLE-FLOW STREAM=3HTR COMPONENT=H2O
```

```
1239
         DEFINE api3 STREAM-PROP STREAM=3LIQ PROPERTY=API
1240
         DEFINE api4 STREAM-PROP STREAM=4LIQ PROPERTY=API
1241
      F
            sum=fch4+fc2h6+fc3h8+fh2+fco2+fhhc+fh2s+fpoil
1242
      F
            x1=fco2/sum
1243
      F
            x2=fh2/sum
1244
      F
            x3=fch4/sum
1245
      F
            x4=fc2h6/sum
1246
      F
            x5=fc3h8/sum
1247
      F
            x6=fhhc/sum
1248
      F
            x7=fh2s/sum
1249
      F
            x8=fpoil/sum
1250
      F
            xchr1=chr1*0.454/3600
1251
      F
            xchr2=chr2*0.454/3600
1252
      F
            xchr3=chr3*0.454/3600
1253
      F
            d1t=d1+xchr1/vol*1000
1254
      F
            d2t=d2+xchr2/vol*1000
1255
      F
            d3t=d3+xchr3/vol*1000
1256
      F
            xw1=w1/(ft1-char1)
1257
      F
            xw2=w2/(ft2-char2)
1258
      F
            xw3=w3/(ft3-char3)
1259
      F
            z1=pp1*1.0e5/(deng1*1000*8.314*(t1c+273.15))
1260
      F
            z2=pp2*1.0e5/(deng2*1000*8.314*(t2c+273.15))
1261
      F
            z3=pp3*1.0e5/(deng3*1000*8.314*(t3c+273.15))
1262
      F
            write(nrpt,'
           1263
      F
1264
     F
            write(nrpt,'(
1265
      F
               6x,'' Temp Pressure (bar)
                                                LIQ/GAS
                                                               TOTAL'')')
1266
     F
            write(nrpt,'(
               '' Loc
                         (C)
                               Data Calc Density (kg/cum), '',
1267
      F
1268
      F
               ''Density (kg/cum)'')')
1269
      F
            write(nrpt,333) ' 1 ',tlc,px1,pc1,d1,dlt
            write(nrpt,333) '
                              2 ',t2c,px2,pc2,d2,d2t
1270
      F
            write(nrpt,333) ' 3 ',t3c,px3,pc3,d3,d3t
1271
      F
      F 333 format(a, 2x, f5.0, 1x, f6.1, 1x, f6.1, 5x, f6.1, 11x, f6.1)
1272
1273
      F
            write(nrpt,'(''Gravity before/after blow down (API):'',2f5.1)')
1274
      F
                  api3, api4
1275
      F
            write(nrpt,'(''Dry N2 free gas composition.'')')
1276
            write(nrpt,'(
      F
                       CO2
                              н2 сн4 с2н6 с3н8
                                                     HHC H2S P-OIL'')')
1277
      F
                5x,''
            write(nrpt, '(''Data '', 7f6.3)') x(1), x(2), x(3), x(4), x(5), x(6), x(7)
1278
      F
            write(nrpt, '(''Calc '',8f6.3)') x1,x2,x3,x4,x5,x6,x7,x8
1279
      F
            write(nrpt, '(''Calc Amounts (mol) '',36x,''H2O'')')
1280
      F
         convert from internal lbmol/hr to mol/s
1281
1282
      F
            fac=454.0/3600.0
1283
      F
                                ",8f6.4)") (fco2*fac),(fh2*fac),
            write(nrpt,'(''Gas
1284
      F
                                 (fch4*fac), (fc2h6*fac), (fc3h8*fac),
                                  (fhhc*fac), (fh2s*fac), (fpoil*fac)
1285
      F
1286
      F
            write(nrpt, '(''Total'', 8f6.4, f8.4)') (tco2*fac), (th2*fac),
                                (tch4*fac), (tc2h6*fac), (tc3h8*fac),
1287
      F
           &
1288
      F
                                (thhc*fac), (th2s*fac), (tpoil*fac), (th2o*fac)
1289
      F
            write(nrpt,'(
               ''Total coke (kg) ='',f6.3,5x,''[ data='',f6.3,'']'')')
1290
      F
1291
      F
                xchr3.coke
            write(nrpt, '(''Total water(kg) ='', f6.3)') (wtt*0.454/3600.0)
1292
      F
            write(nrpt,'(''
                                        FREE-WAT'')')
1293
      F
            write(nrpt,'('' LOC
                                          (kg) '')')
      F
                                  Χw
1294
            write(nrpt,'(''
                               '',2f7.3)') xw1, (wf1*0.454/3600)
1295
      F
                             1
                               '',2f7.3)') xw2,(wf2*0.454/3600)
            write(nrpt,'(''
1296
      F
                             2
            write(nrpt, '('' 3 '',2f7.3)') xw3, (wf3*0.454/3600)
1297
      F
            write(nrpt,'('' LOC
                                   Z '')')
1298
     F
            write(nrpt,'(''
                               '',2f7.3)') z1
1299
      F
                             1
            write(nrpt,'(''
                             2 '',2f7.3)') z2
1300
     F
            write(nrpt,'(''
                             3 '',2f7.3)') z3
1301 F
1302 F
            write(nrpt,'
```

```
1303
 1304
          EXECUTE LAST
The following is the listing for the ASCII data file.
       $indata
         For Run 126.
   3
   4
         Charges all in kg's (flcr is CRUDE)
   5
          flcr=0.46 flh2o=0.03
                                      fln2=0.00061
   6
         Reaction Stoichiometry
       * Input basic reaction stoich.
   8
                                      wtfc-weight fraction coke
                                      fch4, fc2h6 rel moles of noncoke prods
   9
  10
         tuned for ASPEN (low water sol at low T)
       * wtfc=0.48 for wtfo=0
  11
   12
         wtfc=0.192
  13
         wtfo=0.6
         fch4=1.0
  14
  15
          fc2h6=0.390
  16
          fc3h8=0.269
  17
          fco2=0.121
  18
         fh2=0.025
  19
         fh2s=0.062
  20
       * butane
  21
         fhhc = 0.150
  22
  23
         Dry N2/02 + trace free gas composition (For printout only)
         1-CO2 2-H2 3-CH4 4-C2H6 5-C3H8 6-C4s 7-H2S
  24
  25
         x(1)=0.067
  26
         x(2) = 0.021
  27
         x(3)=0.684
         x(4)=0.154
  28
  29
         x(5)=0.0526
  30
         x(6)=0.0087
  31
         x(7)=0.0131
  32
         Coke (kg) for output only
  33
         coke=0.025
  34
  35
  36
       * Input extent. er-fraction of input reacted
                       fer1-fraction of er in reactor 1, etc
  37
  38
         er=0.115 for wtfo=0
  39
         er=0.32
   40
   41
         fer1=0.42
  42
         fer1=0.0
         fer1=0.011
   43
   44
          fer2=0.75
   45
       * Input temperatures(C) and pressures(Bar)
   46
   47
         For reactors 1,2 & 3
   48
       * t1c=426 p1=151
   49
          t1c=233 p1=25.8
       * t1c=363 p1=80.5
   50
   51
          t2c=429 p2=194
   52
          t3c=25 p3=23.8
   53
       * Reactor volume (L)
   54
   55
         vol=1.05
   56
       $end
```

APPENDIX IV.

ACS MODEL PARAMETERS

The important parameter used in the ACS modeling of the crude oil systems are described in this appendix. Only those properties not given in the body of the text are included.

Vapor pressures for the five pseudocomponents used for the crude oil and the P-OIL product are calculated using the following simple boiling point relation

$$\ln(P_{\nu_p}) = \left(T_{b_r} \frac{\ln(P_c)}{1 - T_{b_r}}\right) \left(1 - \frac{1}{T_r}\right),$$

where P_{vp} is the vapor pressure in atmospheres, T_{br} is the reduced normal boiling point, T_r is the reduced temperature, and P_c is the critical pressure expressed in atmospheres. The values for the all parameters are given in the report body with the exception of the critical temperature and pressure of the P-OIL which was taken as 587 K and 3.1 MPa respectively.

In the simulation, six of the components were treated as Henry's Law components. The values of Henry's Law constants as a function of temperature were derived from results obtained from ASPEN PLUS for the crude oil mixture using the GRAYSON property set. The values used are given in Table IV-1. The hydrocarbons where assumed to be normal alkanes.

Temp	CO ₂	H ₂ S	СН4	C ₂ H ₆	СзН8	C ₄ H ₁₀
(°C)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
10	8.6	1.3	19.1	3.6	0.98	0.19
50	16.5	2.9	24.0	5.9	2.2	0.55
100	25.1	5.5	29.6	9.0	4.2	1.46
200	36.4	10.8	38.2	14.1	8.6	4.2
300	41.0	16.4	41.3	16.2	12.1	7.1
400	35.3	19.5	37.8	15.5	13.8	9.3
450	31.3	19.8	34.0	14.1	13.7	10.1

Table IV-1. Henry's Law constants.

The model also requires pure component densities to be defined. The most important of these are for the oil pseudocomponents and water. The water densities used were taken from saturated steam tables and are listed in Table IV-2.

Table IV-2. Liquid water density.

Temp	Density
(K)	(kg/m ³)
283	1001
311	995
366 ·	965
422	919
477	861
533	786
589	680
616	599
630	540
644	435

Oil pseudocomponent densities were assumed to be linearly dependent on temperature. Their values were specified by the two points given for each component in Table IV-3.

Table IV-3. Oil component densities at two temperatures.

	Density (kg/m ³)		
	At 294 K	At 627 K	
HNAPH	847	400	
KERO	879	658	
AGO	913	696	
LVGO	956	750	
HVGO	972	770	
· VR	1044	860	